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SUMMARY

In this report the effect of multiple scattering on the coherent wave

propatation in discrete random media has been investigated. The media is

modelled as a random distribution of spherical and non-spherical scatterers.

The first and second order probability distribution functions are specified
m

and a self-consistent T-matrix approach together with Lax's guasi-

crystalline approximation is used to derive dispersion equations whose

singular solutions yield the complex propagation constant of the "effective"

medium.

Our formalism is well suited for numerical computations for wavelengths

comparable to scatter size and high volume concentration of scatterers; to

our knowledge, it is the only method that provides reliable numerical

'" results for the attenuation and phase velocity of the coherent wave. The

quasi-crystalline approximation (QCA) is found to be applicable for all

concentration values from low to high. The QCA that is used to truncate the

. hierarchy of equations during the configurational averaging procedure

requires knowledge of the two particle joint pr.oability distribution

"' function.

Our model of the random system is that the sphere circumscribing the

scatterers cannot interpenetrate. In the statistical mechanics literature

this is synonymous with ensemble of 'hard spheres.' For such a model,

several forms of the pair-correlation function can be obtained from the

statistical mechanics of simple liquids by using several theories and

* calculations such as the Hypernetted-chain Equation (HNC), the Percus-

Yevick Approximation (P-YA), the Self-Consistent Approximation (SCA),

L- Monte Carlo calculations, etc. For the hard sphere model, temperature

and other thermodynamic quantities do not appear in the final form of the

correlation functions and hence are equally valid for our system. Five

.
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forms of the pair correlation function were considered:

(a) Well stirred approximation (WSA). This is the simplest and in-

Scorporates only the whole correction. In the Rayleigh limit, for

c > .125, this model fails. But with increasing frequency, it is good

"' for higher values of c. At ka = wa/c - 5.0, there is no difference

m between this and other models suggesting that correlations are unimportant

at high values of the wavenumber.

(b) The Percus-Yevick approximation can be used to obtain a semi-

analytical form of the pair correlation function. It is good for

c < 0.35.

(c) Virial Expansion in powers of the number density can also be
7

t
conveniently used since analytical expansions are available. Obviously

. it works only for c < "1.

(d) The Matern model is an analytical model for the pair correlation

function that is also convenient to use for c < '125. The Matern model is

found to be superior to the WSA for c < 0.125.

(e) The self-consistent approximation to the pair correlation

function which is based on the Percus-Yevick model and the Hyper-netted

Chain approximation is the one that has proved most successful in our

computations. It provides reliable results for a wide range of scatterer

concentrations.

All of the above forms were tested for several values of c and ka.

Recently our calculations were compared with the experimental findings of

Professor A. Ishimaru for a distribution of latex spheres in water. The

agreement is excellent for all cases, see our paper Nos: 1, 3 and 4. In

paper Nos: 4 and 5, we have introduced the concept of an average T-
'-4

matrix to include a size distribution for scatterers using the Gaussian

, distribution function. The question may be raised as to the radius of the

2
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excluded volume surrounding each scatterer. If we use 4a, the diameter of

the largest size sphere of the distribution, although we would be correct in

the integration on the allowed position for each scatterer, we would be

excluding an unreasonable volume, thus limiting the volume fraction of

scatterers. It seems more reasonable to take the diameter of the mean

sphere, 2a as the radius of the excluded spherical volume. On the average,

this would be applicable to most scatterers and allow us to consider higher

, volume fractions. If the volume fraction is low enough, whether the radius

of the excluded sphere is 2a or 4a will not pose a problem, see our paper

No: 6 for more details. In Paper No. 5, we have compared Keller's and

-. Twersky's multiple scattering approaches with our formalism. Our formalism

is in exact agreement with Twersky's approach. However, it is better

suited for numerical computations. Recently, we have also performed cal-

culations on coated dielectric spheres in free space or in anotherI
dielectric. Numerical results are obtained for the complex average

dielectric constant, coherent attenuption and phase velocity as a function

of concentration (0 <c <0.42). A plot of coherent attenuation vs c forp
S.coated spheres is attached with this report, see Fig. 1. A T-matrix program

.*i has also been developed to obtain the T-matrix of coated irregular arbitrary

shaped bodies which can be implemented in our multiple scattering approach

to study wave propagation through snow, aerosol and various kinds of debris.

Numerical results of irregular arbitrary shaped bodies will be forthcoming.

Recently, we had extended our formalism to study high frequency

propagation of waves in random media. We have compared our results with

those of experimental findings obtained by Ishimaru for ka as high as

83.596 and the agreement is found to be excellent, see Fig. 2. We are

confident that we have a well founded formalism and a sound numerical

3K .t.ai>9 ~L-.:x ~- . . . .*
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technique along with our T-matrix and finite element (uni-moment) approaches

for the study of wave propagation in random media.

* Various publications resulting from our investigations are enclosed.
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Fig. 1. Attenuation Im(K/k1) as a function of concentration c of
coated spheres a a/a 2  1.17 )for three values of the free space
wavenumber k 0a 1 1



2.0 1111lf r

* 1Ishimaru a 1<uga (1982)

1. 6

1.2

0
a - ---0

10 1010t 10
volume density (%/)

Fig. 2. Plot of y = 2 Im K/n 0aF versus concentration wheren0

is the number density and a t is the extinction cross section of

a single sphere with ka =83.596.
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Coherent wave attenuation by a random distribution of particles

V. N. Bringi'

Wave Propagation Group. Boyd Laboratory, and Department of Electrical Engineering 1"4, V.
p Ohio State Unirersity, Columbus, Ohio 43210 4.

V. V. Varadan and V. K. Varadan

Ware Propagation Group, Boyd Laboratory. Department of Engineering Mechanics, and Atmospheric Sciences Program
Ohio State University, Columbus, Ohio 4320

(Reised November 20. 1981; revised March 15, 1982; accepted March 15, 1982.)

Coherent electromagnetic wave propagation in an infinite medium composed or a random distri-
bution of identical, finite scatterers is studied. A self-consistent multiple scattering theory using the T
matrix of a single scatterer and a suitable averaging technique is employed. The statistical nature of the N.*:: ...

position of scatterers is accounted for by ensemble averaging. This results in a hierarchy of equations
relating the different orders of correlations between the scatterers. Lax's quasi-crystalline approxi-
mation is used to truncate the hierachy enabling passage to a homogeneous continuum whose bulk

IL.. propagation characteristics such as phase velocity and coherent wave attenuation can then be studied.
-.. Three models for the pair correlation function are considered. The Matem model and the well-stirred

approximation are good only for sparse concentrations, while the Percus-Yevick approximation is
good for a wider range of concentration. The results obtained using these models are compared with
the available experimental results for dielectric scatterers embedded in a host dielectric medium. Practi-
cal applications of this study include artificial dielectric (composites) and electromagnetic wave propa-
gation through hydrometeors. dust, vegetation. etc.

I. INTRODUCTION wave propagation in the atmosphere and oceans and
We consider the propagation of plane coherent whenever random distributions of scatterers influence

P electromagnetic waves in an infinite medium contain- electromagnetic wave behavior.
ing identical, lossless, randomly distributed particles. The theoretical formulation presented here closely
Our aim is to characterize the random medium by an follows the procedure described by Varadan et al. :-..
effective complex wave number K which would be a [1979, 1982], Varadan and Varadan [1980], and

Z-: function of the particle concentration, the electrical Varadan [1980]. This approach is based on a self-
- size, and the statistical description of the random consistent multiple scattering theory and relies on the .

positions of the scatterers. The imaginary part of K T matrix [Waterman, 1971] which relates the field
describes the coherent attenuation which is due to scattered by a particle to an arbitrary exciting field.
multiple scattering only when the particles them- The statistical description of the random positions of
selves are assumed to be lossless. The understanding the scatterers is used to define a configurational

,. of the behavior of Im (K) as a function of particle average which results in a hierarchy of equations
concentration (c) and/or frequency (ka) is very im- relating the different orders of correlations between
portant in many practical applications, including the scatterers. Lax's [1952] quasi-crystalline approxi-

mation (QCA) is used to truncate the hierarchy
which results in the usual 'hole correction' integrals.

'Now at Colorado State University, Fort Collins. Colorado Following Twersky [1977, 1978a. b], a radially sym-
80523. metric pair correlation function is introduced, and

Copyright 1982 by the American Geophysical Union. approximate models are chosen from Talbot and
Willis [1980]. The 'well-stirred' approximation

Paper number 2S041 I. (WSA) which was used previously by Varadan et al.
0048-6604 820910-0411S08.00 [1979] and Bringi et al. [1981] assumes no corre-
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COHERENT WAVE ATTENUATION 947

zP scatterers is of the form exp (-jot) and is suppressed
in the equations that follow. Even though the theory
presented here is valid for spheroidal scatterers

, .[Varadan et al., 1982], we present computations only
for spherical scatterers in order to compare our re-

r-- suits with available experiments.
U Let E0 (r) be the electric field arising from the inci-

:- dent plane wave and ES(r) the field scattered by the
ith scatterer. Both these fields satisfy the vector
Helmholtz equation. The total field at any point out-
side the scatterers is given by the sum of the incident
field and the fields scattered by all the scatterers,
which can be written as

Fig. 1. Geometry of randomly distributed and aligned scatterers. E(r) = E°(r) + Z ES(pj) pi = r - ()

where ES(p) is the field scattered by the ith scatterer
lation between the particles except that they should at the observation point r. However, the field that
not interpenetrate. In particular, the WSA gives excites the ith scatterer is the incident field E° plus
unphysical results for c > 0.125 at the Rayleigh or the fields scattered from all other scatterers except
low-frequency limit. the ith. The term exciting field E' is used to dis-

In this paper we consider two other pair corre- tinguish between the field actually incident on a scat-
lation functions, viz., (1) the Matern [1960] model terer and the external incident E° produced by a
and (2) the Percus-Yevick [Percus and Yerick, 1958] source at infinity. Thus at a point r in the vicinity of
model for a classical system of hard spheres. Compu- the ith scatterer, we write
tations of Im (K) are presented for dielectric scat-
terers imbedded in a host dielectric medium, using
the above three models as a function of frequency El(r) = E0(r) + E,(pj) a < lpjl < 2a (2)
and concentration. We compare our solutions to j*d

. some recent optical propagation experiments con- where a is a typical dimension of the scatterer.
ducted by lshimaru (A. lshimaru, personal communi- The exciting and scattered fields for each scatterer
cation, 1981). Sample computations are also presen- can be expanded in terms of vector spherical func-
ted comparing the WSA and the single scattering tionswith respect to an origin at the center of that
approximation for a rain medium. scatterer:

___ 2 z I 2
2. FORMULATION OF THE PROBLEM Ef(r) = bi,.b Re *',,(p1)

"uI 1=1 .. O o=1

Consider N identical, finite dielectric scatterers b. Re * (3)
that are randomly distributed either in free space or In
in a host dielectric medium. The scatterers are homo-

- geneous with a relative dielectric constant of s,, their and
centers being denoted by 0, 02, 03,'", ON (see Er) = B' , (4)
Figure I). They are assumed to be bodies of revol- :
ution with symmetry axis parallel to the z direction.
A monochromatic, plane, coherent electromagnetic where n represents a combined index notation for the
wave is assumed to propagate along the symmetry se vecm o s].
axis of the scatterers so as to satisfy the condition The vector spherical functions are defined as
that the effective medium be isotropic and polariza- j.(r) = V x [rh kr)]Y,.o(O. ) (5)
tion insensitive. The time dependence of the incident
field and hence the fields scattered by the individual *2 .o(r) (I klV x 4#,,°(r) (6)

................ :.................. ........-.-....... . .
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n In (3-6), k is the wave number, h, is the spherical the following set of algebraic equations for the excit-
Hankel function of the first kind, and the Y.,(6, 0) ing field coefficients b',:
are the normalized spherical harmonics defined with

* real angular functions. In (3) the exciting field is ex- b- t a, + X .(p,)
panded in terms of the regular (Re) basis set (Re 4,.) J' .

obtained by replacing h. in (5) and (6) by j., the Tj, . b ... (1)
spherical Bessel functions of the first kind. Thus the

. choice of the basis set in (4) satisfies the radiation From (11) it can be seen that the exciting field

condition at infinity for the scattered field, while the coefficients of the ith scatterer explicitly depend on

choice in (3) satisfies the regular behavior of the ex- the position and orientation of the other scatterers.

citing field in the region a < jpi I < 2a. The super- In this paper we consider a random distribution of

- .. script i on the basis functions refer to expansions spherical scatterers and the case when both N -* :

with respect to 01, and bl and B, are the unknown and the total volume accessible to the scatterers

exciting and scattered field coefficients, respectively. V - such that N/V = n0 is a finite number den-
" We also expand the incident field in terms of vector sity. For such distributions a configurational average

spherical functions: of (il) can be made over the positions of all the
scatterers [see Varadan et al., 1982]. The quasi-

E°(r) = a, Re qM(pC) (7) crystalline approximation [Lax, 1952] can then be
invoked to arrive at an equation for the configur-

where the a,. are the known incident field coef- ational average <b' >i of the exciting field coefficients
ficients. with one scatterer fixed:

by The unknown coefficients M. can be related to B,
by means of any convenient scattering operator; in (bit" eik'a + (N - 1) FT

this case we employ the T matrix as defined by
Waterman [1971]: p(r I rj,, 4 A>j drj (12)

S.= T' b (8) where p(rj I ri) is the two-particle conditional prob-
ability density.

Substituting (3), (4), and (7) in (2), we obtain We now assume that the average or coherent field
propagates in a medium with an effective complex

b!,, Re , = e" ' ,F a, Re *, + CA (9) wave number K = (K1 + iK 2)zin the direction ofthe
A J*, ,original incident field:

Since the field quantities are expanded with respect (E'(r)>, = A exp (iK.e. r) (13)
to centers of each scatterer, we obtain (9) with basis where A is the amplitude of the coherent wave. Thus
functions expanded with respect to ith and jth cen- the average exciting field coefficients may be ex-
ters. In order to express them with respect to a pressed as
common origin 0, we employ the translation addi p
tion theorems for the vector spherical functions (see, (b, ,,> = exp iK. • r)Y,,. 6.6,,1[, 16. 2 + 6,,t2] (14)

. for example, Bostrom, [1980]) which can be written where the Kronecker deltas in (14) indicate that only
in a compact form as follows: the azimuthal index m = I contributes while those in

= ... ('NAPsj) Re j,(P,) lpuj > IPil square brackets indicate that the effective medium is
' " " (10) isotropic.

,p) --- R,. .. (Pi) '~*.,(P,) IP,1I < pi Equation (14) is now substituted in (12), and the

conditional probability p(rjlri) is expressed in the
where pAj = r, - r, is the vector connecting 0 to O, form
,. ,is the translation matrix for the vector func-

tions, and R,.,,,., is a matrix with spherical Hankel =rj 10 - OX) . >
functions in O,.,,n, replaced by spherical Bessel func- v( - )
ti€l5 

(15)
tJ ~ ~tions. 

~,l,

Employing (8) and (10) in (9) and using the orthog- PrIr,) = 0 X < I

onality of the vector spherical functions, we obtain where x = pjl 2a. The function q(x) is termed the
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2.0

c ['1 + 1) + /(I + 1)AA+
' 0.26

1.6 
00

.6.0

1-4In (17), c 7 ra'no is the fractional concentration by
9(X) 6 %volume, and in (18),

[I z mh

is the Wigner 3-j symbol. If the integral I in (17) can
o.8 be evaluated for suitable models of the pair corre-

lation function, then (16) constitutes a set of homoge-
0.6 neous, algebraic equations with Yr,,., as the un- *

knowns. For a nontrivial solution, the determinant of
1.0 .5 2.0 2.5 3.0 3.5 4'0 the coefficient matrix must vanish. This yields the

diprinequation for the effective, complex wave
*Fi& 2. The Percus-Yevick pair correlation function for hard number K. In the Rayleigh or low-frequency limit,

spheres. analytical solutions for K can be found while at
higher frequencies the solutions can be generated

paircorelaionfuntio, whch s asumd t becomputationally. The real part K, is the phase con-

spaicorrlato funetrion, whuaich is2 cassme tow be stant while the imaginary part is the attenuation con-
spheicaly smmeric.Equtio (12 ca nowbe ~n-stant of the effective medium.

plified by making use of certain symmetry properties If the concentration is sparse, c - 0, then g(x) as-
*of the T matrix [Waterman, 1971] and by invoking sumes the form of a step function at x =1. This be-

the extinction theorem [Twersky, 1977] to yield the hvo fgx stre h elsirdapoi
following set of equations for the unknown coef-

pficients Y,., 100.

" + 6,S6w,
a 0.1 cm

N ~ ~ O -I I*',.~ t"I" I al

- 2

*where 
1-2.r

I(K, k, c, #
10,

6c
(a 2- (1a'[2kaji(2Ka)h4(2ka) -2Kah,(2kayj (2Ka)]

+ 24c f2[(Y) - I hA(2kaxYjA(2Kax) dx (17) k

* L 21(1 + 1) 1:.) using the WSA.

I.-.
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U mation (WSA) by Talbot and Willis [1980] and has K.91

been used previously by Fikioris and Waterman 0.51

[1964]. Talbot and Willis [1980] also discuss a "01
number of other pair correlation functions suitable 301

for use at higher concentrations, viz., a model due to 06

: Matern [1960] and the model obtained by solution
of the Percus-Yevick [Percus and Yevick, 1958] inte- , 2

*I gral equation for a classical system of hard spheres
(Wertheim, 1963]. Other forms for g(x) can be used Y
based on the statistical mechanical theory applied
toward the study of dense gases and liquids
[Twersky, 1978b]. In this study, however, we show
sample computations using the g(x) corresponding to
the WSA, the Matern model which is analytic, and

." the Percus-Yevick approximation (P-YA) based on
.:" tabulated values of g(x) given by Throop and Bear- 064

man [1965]. The behavior of g(x) versus x is shown 6" 3  
62

C
in Figure 2 for various values of concentration.

Fig. S. The normalized attenuation constant -, versus con-

3. COMPUTATIONS centration c for different values of ka using the WSA.

In many practical applications it is of interest to
determine the concentration levels above which where Q,, is the normalized (with respect to ira2)

multiple scattering effects must be accounted for in a extinction cross section of a sphere of radius a.

rigorous manner. At very low concentrations, c- O, Brown [1980] has shown recently that under the con-

the particles can be considered as essentially decor- ditions of c-- 0 and no correlation between particles,

related so that the so-called 'single scattering' ap- the Foldy-Twersky integral equation [see Ishimaru,

proximation (SSA) can be used leading to the follow- 1978] for the coherent field reduces to (19) above and
ing expression for Tm K: thus does not account for the effects of multiple scat-

tering. To demonstrate that (19) and the theoretical
Tm (Kk) = JcQ.,,/(ka) (19) procedure given in this paper lead to identical results,

we have compared computations for a monodisperse

rain medium. The rain medium is assumed to consist
of spherical water drops at concentrations in the

SSA range 10' < c < 10-2 which encompasses even the
0 0,I Cm heaviest rainfall conditions. In Figure 3 the attenu-

ation constant= 41rK 2 K is shown as a function
c of freqency or ka using the WSA, which is to be
o2 compared to Figure 4 which uses (19) or the SSA.

The refractive index of water is taken from Ray

10 -2 [1972] assuming a temperature of 5C. Note that
both solutions yield nearly identical results. In Figure
5 we show y versus concentration (or equivalently,
rainfall rate) at a number of fixed frequencies or ka

o-3. values using the WSA. The straight line relationship
-4 reflects an attenuation versus concentration relation-
0ship of a power law form. Olsen et al. [1978] have

used (19) to derive the power law relation between

0 .. 0 20 3.0 attenuation and rainfall rate (see their Figure 3).
ka At higher concentrations, pair correlation effects

Fig. 4. The coherent attenuation constant 'versus ka for , - become important. In the Rayleigh or low-frequency
r;.) usingSSA. limit, Twersky [1978h] has given an expression for

-. A
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sonably good agreement with the experimental value.
" LATEX SPHERES iN WATER For c > 0.125 the Matern model, as well as the WSA,

ko.o05 deviates considerably from the P-YA. Even though
experimental values for c > 0.1 are as yet unavail-

•-PRESENT THEORY WITH P-YA able, we feel the P-YA will continue to predict the
Im(K/k)f. correct behavior for values of c as high as 0.35. In

P R TWERS(Y Figure 8 the attenuation constant is plotted versus ka
for a fixed concentration c = 0.209 using the SSA,
WSA, and the P-YA. Values for the WSA for
ka < 0.75 are not shown since the solution fails (Im

.wsA K < 0) in this region. However, as ka increases, it
appears that the WSA tends to merge with the P-YA.
The SSA, on the other hand, consistently overesti-
mates the attenuation over the full range of ka
values.

0 0.I 0.2 03

C
4. CONCLUSIONS

Fig. 6. The coherent attenuation Im K k) versus concentration c This paper analyzes the effects of multiple scatter-
t ka = 0.05 for latex spheres in water. ing on the coherent wave as it propagates through a

discrete random medium consisting of pair-
Tm (K, k) by considering the leading effects of the pair correlated scatterers. At low concentrations
correlation: (c _< 1%), multiple scattering effects are seen to be

negligible, while at higher concentrations, suitable
Im (K k)= dka)3 [(,- I) (F, + 2)]2IV (20) pair correlation models must be assumed. Compu-

where IV is the packing factor given by tations are presented using the well-stirred approxi-
mation and the Percus-Yevick approximation as well

( _C" as a model due to Matern. These computations are... It' = - -- I + 24c o V2[,yix|- 1] dx 121)I + 2c)2  compared (and shown to be in excellent agreement)

The above integral can be intergrated analytically to
give W when gyx) is given by the P-YA. In Figure 6 - 1
we show Tm (K k) versus concentration for a fixed -
frequency or ka = 0.05. The random medium is as-
sumed to consist of latex spheres (s, = 2.26) imbed- ,
ded in water and corresponds to the experimental
setup used by lshimaru (A. Ishimaru, personal corn- m(Kk)-

munication, 1981) for his optical propagation experi-
ments. The agreement between (20) and the compu- LAEX sP,,RES s .A,,,

tations using the P-YA is excellent as expected while 4_ X PHRE.... TE

both the WSA and the Matern model fail (tim K < 0)
for c > 0.125. However, the Matern model is superior
to the WSA as expected. In Figure 7 we show similar [- S.A

results at ka = 0.56 for which lshimaru (personal - sA

" . communication, 1981) has experimental results (latex M... VATERN

sphere diameter 0.107yi, 0. = 0.6u) at concentration
values of 0.01 and 0.1. Note that the SSA overesti- 0!
mates the attenuation constant even for c as low as 2 0 3

0.01. as c increases, the deviation from the P-YA is
hi significant. For low values of c, the P-YA. WSA. and 7 Th coherent .11tenualIn Im K i

Matern model are all in excellent agreement. E~en at tratin , at ka - (1 56 for LtcX ,phcrc Inl %AtCr UlIng different
c = 0.10. all three pair correlation models are in rea- model of pair .orrclation Iunl.ns ,

t-.

............................... .
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of equations. Thus, only knowledge of the two particle (pair)
correlation function is required. In ( ]we assumed that the
particles were hard (nonpenetrating) but otherwise uncor-
related. Talbot and Willis [51 refer to this as the "well-stirred3 approximation" (WSA). This yielded a set of "hole correc-
tion" integrals which were evaluated analytically and the ex-
tinction theorem was invoked to yield the dispersion relations
characterizing the bulk or effective properties of the medium
which was solved numerically (I], [61, [7]. Computations
of the effective coherent wave attenuation as a function of
frequency were presented in (11 for spherical and oblate

qspheroidal scatterers at concentrations (c) of 0.05, 0.1, and
0.2. The WSA leads to unphysical nulls in the plots of coher-
ent attenuation as a function of frequency or concentration
for c > 0.125 and in fact begins to fail for c > 0.05 in the low
frequency or Rayleigh limit. These nulls, however, disappear
at higher values of the nondimensional wave number ka (a
being a characteristic dimension of the obstacle).

In this communication, we wish to consider a more realis-
tic model of the pair correlation function which is valid for
higher values of concentration. The Percus-Yevick (P-YA)
model [81 seems most suitable at the present time. Calcula-
tions employing P-YA here are compared with WSA results
in I 11. The unphysical nulls in I I I disappear for lower values
of ka, and at higher values of ka there is agreement with the
results obtained in I I I and ( 71.

MULTIPLE SCATTERING FORMULATION
The Effects on Pair Correlation Function of Coherent We consider N(N - -o) rotationally symmetric oriented

* iWave Attenuation in Discrete Random Media scatterers randomly distributed in a volume V(V - o) so that
the number of particles per unit volume n o = N/V is finite,

V. N. BRINGI, MEMBER. IEEE, V. V. VARADAN, AND see Fig. I. Only the most important details that lead to the dis-
V. K. VARADAN persion equation involving the pair correlation function are

presented and for all intermediate steps, we refer the reader

Absoract-Tbe Percus-Yevick approximation (P-YA) of pair car- to (I].
relation function for hard spheres is combined with the T-matrix Monochromatic, plane electromagnetic waves giving rise to

m formulation to study the coherent wave attenuation of electromagnetic an electric field E are assumed to propagate parallel to the
wave propagation in a discrete random medium. The effect of the pair rotational axis of symmetry of the scatterers (the z-axis),

, correlation function is seen to be silgnifcapt -thigh fractional volumes see Fig. 1. The field scattered by the ith scatterer is denoted
of the discrete scatterers (MG.12S), but aL. , apends on the frequency by le' so that the total field at a point r outside the scat-

- of the propagating wave--the effect being less at higher frequencies. terers is given by
The results are compared with previous calculations which employed

- the "well-stirred approximation" (WSA) for the pair correlation. N

INTRODUCTION i=1
We consider the multiple scattering of electromagnetic The field exciting the ith scatterer tie is given by

waves by randomly distributed dielectric scatterers using the
* "i': approach given by Varadan, Bringi, and Varadan [ 11. This .0 - o ( + iS(

9
); a < j9- 9 l1< 2 . (2)

, formulation uses the T-matrix 121 to characterize the scat- =

.e. tering by a single isolated particle followed by configurational /
averaging techniques (31, [4]. Lax's quasi-crystalline approxi- From (1) and (2), we note that

-. i ii mation (QCA) 141 is used to truncate the resulting heirarchy = . (3)

Manuscript received July 31, 1981; revised September 18, 1981.
This work was supported in part by NOAA under Gran't 04-78-B01-21 so that the exciting and scattered fields must be defined in a

* -, and by NSF Grant 8003376. self-consistent manner. These fields are expanded in a set of
-" ," V. N. Bringi is with the Department of Electrical Engineering, vector spherical functions as follows:

L... Colorado State University, Fort Collins, CO 80323.
V. V. Varadan is with the Wave Propagation Group, Boyd Labora- 1 O

tory, and the Department of Engineering Mechanics, The Ohio State ~ V V~
* University, Columbus, OH 43210. Z Z' fd b.mI Re M,.#'r 9,)

. V. K. Varaden is with the Wave Propagation Group, Boyd Labora- 1=0 m=0 o=e
tory, and the Department of Engineering Mechanics, The Ohio State (
University, Columbus, OH 43210. +c.., Re1Vo.X('-'); a<l;- l<2g (4)
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P field. The dispersion equations then take the following form:

Y..
b n+n'OniE 3 = i(-i (JH)XfYroIp[(T0 o°  I) i

n=l p=! hzln-n'I

. "0oo(n, n', X) + (Te'ip)2 ,o(n, n', ))

Sy + IZeip[(TeZ)l 2 poo(n, n', X)

(T e 1 (T 2,2"' o(n, n',X)]} (9)

.. . in Zel ,

I n'

Fig. 1. Geometry of randomly distributed and aligned scatterers with
* dielectric constant e, excited by an incident plane wave-'(?). Each (z -z,(JH).Yojp[(ToIp

scatteier is assumed to be circumscribed by a spherical shell of n=pI ,=In-n'ln
"-" radius . Xoe(n, n', X) + (Te;)2 1 

Oee(n. n', X)]

and + Ze1P[(Telp) Xoe(n, n,

Eis?)=elm 2

* I m a

+ C'mINmI(>2 where (JH) x is an integral given by

where {b, 4l and {B, C} are expansion coefficients of the (JH)X(K , k, c)

exciting and scattered fields, respectively. The vector spherical 6c
functions (, ,R} are defined by Stratton [91. - 2 ( 2kajX(2Ka)h '(2ka)

.. -These expansions are substituted into (2) with the follow- (ka)2 
-(a) 2

ins definition of the T-matrix of a single scatterer - 2Kah X( 2ka ) X' (2Ka) ]

amiBo1 1 r (T, ,' (T. ,.r)' 1
L-m J ( o.)2 1 (TO,. )2J + 24c x2 [g(x)- I] hX(kx)jX(Kx) dx (11)

Ib''i'1 (6) and the functions }, xa are defined in [71.

L Cm'r-J In the above equation, c = 4ira3 no/3 is the effective "spher-
e ical" concentration. In (9) and (10), ' and x are independent

(where the T-matrx is independent of the position of the scat- of k and K, and expressions for them may be found in [ I I and
terers) which results in an equation for the exciting field [71. in (1I),/j and hA are the spherical Bessel and Hankel

:.. coefficients {b, c} alone. This equation is averaged over the functions and g(x) is the pair correlation function that is dis-

position of all scatterers where the QCA [41 is involved, cussed below.

and we arrive at an equation for the configurational average

-.,, (b') and (c), of the exciting field coefficients with one par-
ticle held fixed. PERCUS-YEVICK APPROXIMATION FOR THE

We assume that this average field (the coherent field) pro- PAIR CORRELATION FUNCTION
pagateh in a medium with an effective complex wavenumber It is well known that at high concentrations the effects, of
' K (K I + iK2 )k in the direction of the original incident field pair correlation become important. Following the notation in
in the discrete medium. Thus, we obtain (I1, the conditional probability distribution p(i li 9) is ex-

(blm) = ilY'm.e1 "  (7) pressed as

and - > l
fa W(12)

a :- (CmI)i = fzami r (8) .) 0; x < I

where (Y, Z) are expansion coefficients of the average exciting where x = I r - I i/2a. The Percus-Yevick integral equation

2 .
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IS 1I for hard spheres is given by e 6r 3. . . .
a/b .10

7(2)= I + no r(')d ' ko005

fl. 1<2s

no 7(X)(1-- V) d!' (13) ,m(K/k)

Ix 1<2@
i -XP1>2a .Y

The function r(x) is related to the direct correlation function
C(') of Ornstein and Zernike and the pair distribution func-
tion () [ 9 1:

g(;) = (); I>2a 0 01 02 03
Fig. 2. Coherent wave attenuation, Im (K/k) as a function of concen-

g() = 0; I1 < 2a 1)tration for dielectric spheres
-- c(l) = 7(C) I I4 < 2a o

S-=0 2. 3168b
For hard spheres, the direct correlation function C(;) is a/b. 0

known explicitly and Wertheim [101 has obtained a series o" C 0.2

solution for g(x) as a function of concentration when g(x)
is radially symmetric. Throop and Bearman (I I I have used 0 . 4 Irm(K)
the Wertheim result and provided tabulated values of g(x) as a R(K)

function of x for several values of c. Idz
. The highest concentration for which the tabulated results

can be used is c = 0.26. Beyond this concentration g(x)
oscillates significantly from its asymptotic value of I for x>
4. Thus, the integral in (11) cannot be evaluated accurately.

At low values c, g(x) 2, 1 and hence the integral in (11) is Ids

negligible and the remaining term is simply the WSA which --- WSA
was used in (1). Thus, (11) can be regarded as a modified
"hole correction integral" and is of the same form used by P'YA

-. Twersky [121, [ 131. Talbot and Willis [51 have also suggested
models of the pair correlation function given by Matern which 0 0 2 005 '0 5
are valid for c < 0. 125. The advantage of the Matern model is ka
tae vid fo cmlee <0. . eavantaFig. 3. Attenuation coefficient a as a function of ka for spherical di-
that it is completely analytic. electric scatterers.

NUMERICAL COMPUTATIONS

In the Rayleigh limit, Twersky [131 has given an expression
for K2 /k by considering the leading effects of the pair correla- e,, 3.6

tion function: /b ' ,.0
CI C0209

Ka/k 1Kk) =c(ka)Sj' (S .

',. where e, is the dielectric constant of the scatterer and W is the o-  ,
packing factor given by

W = I + 24c x 2[g(x)- 11 dx. (16).. ::(I + 2c) 0o
--- WSA

In Fig. 2, we compare Twersky's result for the coherent 1 - A

attenuation with computations for ka = 0.05 and e, = 3.168 0
as a function of concentration. Also shown is the result assum-
ing the WSA. It is clear that the WSA fails for c > 0.05 while
the present calculations is in good agreement with (i5). 0 05 , 0 1 5 20

In Fig. 3, 4, and 5, calculations using the P-YA model are Fig. 4. Attenuation coefficient a versus ka for oblate spheroidal
presented as a function of ka for c 0.2 for spheres and scatterers.

• 4
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10° [ 61 V. V. Varadan and V. K. Varadan. "Multiple scattering of
electromagnetic waves by randomly distributed and oriented

/- dielectric scatterers." Phys. Rev. D.. vol. 21, pp. 388-394, Jan.
o/b-I.25 - _-1980.c • 020 [7) V. N. Bringi, T. A. Seliga, V. K. Varadan, and V. V. Varadan,
C 0 209 A"Bulk propagation characteristics of discrete random media," in

.6 Multiple Scattering of waves in random media, P. L. Chow, W. E.
' 0Kohler, and G. Papanicolaou, Eds. Amsterdam: North-Holland.

1981.

S4 K) [81 J. K. Percus and G. J. Yevick. "Analysis of classical statistical
Re(K) mechanics by means of collective coordinates." Phys. Rev., vol.

110. pp. 1-13. Apr. 1958.
(91 J. A. Stratton, Electromagnetic Theory. New York: McGraw-

Hill, 1941.
,, 1 : [0 S.Wertheim, "Exact solution of the Percus-Yevick integral

P-YA equation for hard spheres," Phys. Rev. Len., vol. 10, pp. 321-323.'i" --- W AApr. 13.
f5/ il] G. J. Throop and R. J. Bearman, "Numerical solutions of the

Percus-Yevick equation for the hartl-sphere potential." J. Chem.
s,' Phys.. vol. 42, pp. 2408-2411, Apr. 1965.

" 12] V. Twersky, "Coherent electromagnetic waves in pair-correlated
o orandom distribution of aligned scanerers," J. Math. Phys. vol. 19.ko pp. 215-230, Jan. 1978.

Fig. . Attenuation coefficient a versus ka for oblate spheroidal [13) V. Twersky, "Multiple scattering of waves by periodic and by. . 5.e Atteuatirandom distributions," in Electromagnetic Scattering P.L.E.Uslenghi, Ed. New York: Academic, 1978.

oblate spheroids. Equations (9) and (10) were solved numeri- [14] V. K. Varadan, V. V. Varadan, and Y. H. Pao, "Multiple
cally to find K(k) using analytical results at low frequencies scattering of elastic waves by cylinders of arbitrary cross section. I.
- lSH-waves," J. Acoust. Soc. Am., vol. 63, pp. 1310-1319. May

S (Rayleigh limit) as initial guesses in a root searching algorithm. 1978.
For purposes of comparison, [ 1, Figs. 3, 5, and 61 using just [151 V. K. Varadan and V. V. Varadan, "Frequency dependence of
the WSA, are reproduced. It is clear that the nulls appearing elastic (SH-) wave velocity and attenuation in anistropic two phase
as a result of the WSA are wrong and unphysical. However, media." It. J. Wave Motion, vol. I, pp. 53-3. 1979.

.' it is interesting to observe that for ka > 1.5, it appears that the [161 V. K. Varadan, "Scattering of elastic waves by randomly dis-
tributed and oriented scaterers," J. Acousts. Soc. Am., vol. 65, pp.

results obtained using the WSA alone tend to the P-YA result. 655-657, Mar. 1979.
Note that in 11, Fig. 31 the curves marked c = 0.05 and c =

0.1 must be interchanged.

CONCLUSION

Calculations using the Percus-Yevick (P-YA) pair correla-
" tion function for hard spheres are compared with previous

computations [ I using the well stirred approximation. The
effects of pair correlation are seen to be significant for high
values of scatterer concentrations c > 0.05, although this
effect seems to decrease with increasing frequency. It is clear
that the WSA cannot be used for arbitrary concentrations and
some of the results presented in ( 11, [61, and ( 141-( 161 are
thus unphysical.
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Multiple scattering theory for waves in discrete random media

and comparison with experiments

V. K. Varadan,' V. N. Bringi,2 V. V. Varadan,' and A. Ishimaru3

(Received October 25, 1982; revised January 12, 1983; accepted January 12. 1983.)

Attenuation of electromagnetic waves by a random distribution of pair-correlated dielectric spheres
is studied as a function of frequency and volume concentration of spheres. The main aim of this paper
is to compare theoretical results obtained using a self-consistent multiple-scattering formulation and
measured values of attenuation for latex spheres in water. The agreement between theory and experi-
ment is very good.

INTRODUCTION cedures has been used by the authors to develop a

A discrete random medium is defined here as a computational method for handling acoustic, electro-
random distribution of a large number of identical magnetic, and elastic waves [Varadan et al., 1979,
pair-correlated scatterers embedded in an infinite ho- 1982; Varadan and Varadan, 1980a, b; Bringi et al.,moeeu arxmdu.Tefatoa oue 1981, 1982a, b]. Lax's [1952] quasi-crystalline ap-mogeneous matrix medium. The fractional volume p oi ai n Q A s u e n c n u ci n wt
concentration c is assumed uniform, and the effects of proximation (QCA) is used in conjunction withvanous models for the radial distribution functionpair correlation are described by the radial distr- enabling passage to an average dielectric medium
bution functions arising in the statistical-mechanical whose properties depend on frequency, scatterer con-
treatment of dense gases and liquids. We consider ceroadte deecr on satr bo h

plane wave propagation through such a model centration, and the dielectric constants of both the

random medium with attention being focused on the scatterers and the matrix medium. The intent of this

coherent (or ensemble averaged) wave attenuation. paper is to compare theoretical calculations of coher-
The discrete random medium is then characterized ent attenuation with optical experiments conducted

recently by Ishimaru and Kuga [1982]. Preliminaryby an effective, complex wave number K, or equiva- comparisons between theory and experiment have
" lently, by an effective dielectric constant. If the scat- bee prte

been reported [Bringi et al., 1982a, b], where the
terers and the matrix medium are assumed lossless, single-scattering approximation is compared with
then the coherent wave attenuation is caused by scat- multiple-scattering calculations using various forms
tering, and it is of great interest to determine the for the radial distribution function (e.g., Matern and
wave frequency and scatterer concentration for Percus-Yevickmodels).
which multiple-scattering effects dominate. Extensive In this paper we provide an outline of the

,. . work by Twersky [1977, 1978a, b, c, 1982] has laidwhefoudatiork b or [1977,le-scat b t1982hay ind- multiple-scattering theory followed by a brief dis-
the foundation for multiple-scattering theory in dis- cussion of the self-consistent radial distribution func-
crete random media. A related approach using the T tion used in the computations. This is followed by
matrix of a single scatterer [Varadan and Varadan, calculation of coherent wave attenuation as a func-
1980a] together with configurational averaging pro- tion of scatterer concentration (0 < c < 0.4) for a

number of wave frequencies (0 < ka < 7) coinciding
Wave Propagation Group, Boyd Laboratory, Department with the experimental setup of Ishimaru and Kuga

of Engineering Mechanics, and Atmospheric Sciences Program, [1982]. Finally, previous computations presented by
Ohio State University. Columbus, Ohio 43210. Bringi et al. [1981] corresponding to the experiments

'Department of Electrical Engineering, Colorado State Uni- of Hawley et al. [1967] are discussed in the light of
versity. Ft. Collins. Colorado 80523.

. Department of Electrical Engineering, Unisersity of Wash- the results presented here.
ington. Seattle, Washington 98195.

Copyright 1983 by the American Geophysical Union. OUTLINE OF THEORY

Paper number 3S0089. Consider an incident TEM wave propagating in an
0048-6604 83 0506-(X)8908.00 infinite lossless, background medium of t., po which
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. 322 VARADAN ET AL.: MULTIPLE SCATTERING IN DISCRETE RANDOM MEDIA

is filled with a random distribution of identical +24c -(
dielectric spheres of e, po- The total dielectric field at Ix{ox) I }h(2kaxli(2Kax)
any point in the background medium is the sum of Ithe incident field and the fields scattered by all the In (4a) and (4b), Y.. and Z. are the unknown ampli-
ttt scatterers, tudes of the average exciting field, T., refers to the

*scatterers
elements of the T matrix for a sphere, and the func-

E(r) = E186(r) + Es(r -r (1) tions ek and X are defined by Bringi et al. [1981]. In
= a (4c), g(x) is the radial distribution function; jk and hA

where Es(r - rJ) is the field scattered by the ith scat- are the spherical Bessel functions, and the primes
terer at the observation point r and r, is the position denote differentiation with respect to the argument; k
of the ith scatterer. The field that excites the ith scat- is the wave number of the background medium; a is
terer, however, is the incident field plus the fields the scatterer radius; and c is the fractional con-

- scattered from all the other scatterers. The term ex- centration of the scatterers. Assuming that g(x), ka, c,
citing field, El, is used to distinguish between the field and the T matrix are known, the singular value of
actually incident on a scatterer and the external inci- the coefficient matrix generated from (4) can be
dent field E'" produced by a source at infinity. Thus solved for the average propagation constant K =
at a point r in the vicinity of the ith scatterer, the K, +jK 2.
exciting field is expressed as

• "" •RADIAL DISTRIBUTION FUNCTION

E,(r) = El"f(r) + E E (r - rj) (2)
J° The discrete random medium is considered as a

' From (1) and (2) we note that statistical ensemble of impenetrable spheres. In the
'. -lrstatistical mechanics literature this is synonymous
E~r) = ET(r) + E (r) (3) with an ensemble of 'hard' spheres. The radial distri-

i so that the exciting and scattered fields must be de- bution g(r) is defined in terms of the two-particle
fined in a self-consistent manner. Waterman's T joint probability density p(rj I rJ defined as
matrix formalism is used to relate the exciting and I
scattered field expansion coefficients (the fields are (rJ irA ) = (lr - rl) Irj - ril > 2a
expanded using the vector spherical functions as a (5)
basis). Configurational averaging is performed in (2) p(rj I r) = 0 Irj - rJ < 2a

as described by Varadan et at. [1979]. The T matrix Equation (5) implies that the particles are hard (no
together with the QCA is used to generate a homoge- interpenetration) and the excluded volume is a sphere
neous system of equations whose singular solutions of radius a although the particles themselves may beyield the average propagation constant (K =K1 +yieldfo the dicree prpgaiondom medium.nThe(snonspherical. The function g(r), (r = r,,), is called the;.:jK,) for the discrete random medium. The system of pair correlation function and depends only on
equations is given below, and the reader is referred to
Bringi et al. [1981], Varadan et al. [1979, 1982], and I rj I = Irj - r,I because of translational invariance of
Varadan and Varadan [1980a] for full detals, the system under consideration. Several theories and

a d nf dcalculations are available for determining g(r),

- = ~ namely, the hypernetted-chain equation, the Percus-
Y V hl A Yevick approximation (P-YA), the self-consistent ap-

Y, T- , (n, A)- , Tproximation, Monte Carlo calculations, etc. These
[., ,+z, T., (n, m, .;)] (4a) approaches are described by McQuarrie [1976], but

2- the reader is referred to any standard text on statis-
Z. - (JH), tical mechanics for full details.

. I"' ''-The pair correlation function for an ensemble of
Y-T.,'(n, m, i) + ZTi(n, m, .)] (4b) particles depends on the nature and range of the in-

where terparticle forces. The average of several measure-
6c ments of a statistical variable that characterizes an

(J)= (ka)- (Ka)2  ensemble will depend on the pair correlation func-S- Ka'tion. To obtain expressions for the pair correlation
(2kaj(2Ka)h'(2ka) - 2KahA(2kaY',(2Ka)] function, one needs a description of the interparticle
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n forces. In our case, we assume that the scatterers 30
behave like effective hard (impenetrable) spheres.

Percus and Yevick (1958] have obtained an approxi- .314

- mate integral equation for the pair correlation func-
tion of a classical fluid in equilibrium. Wertheim 20

[1963] has obtained a series solution of the integral
equation for an ensemble of hard spheres. The statis- gx)

- tics of the fluid are then the same as those of the ,*.
ensemble of discrete hard particles that we are con- ,0.
sidering.

Although integral expressions for the correlation
functions also result in a hierarchy, Percus and Yevick
[1958] have truncated the hierarchy by making cer-
tain approximations that result in a self-consistent 0 2.0 4.0

relation between the pair correlation function g(r)
and the direct correlation function C(r). The direct Fig. 1. The Percus-Yevick (P-YA) pair correlation function for
correlation can be defined to be the direct effect of hard' spheres.
scatterer 1 on 2 which roughly has the range of the
interparticle potential and also an indirect effect due

* to the effect of 1 on 3 which in turn has an effect on
2. Since 3 can be any scatterer of !he system, it will Equation (8) can be substituted back into (6) to
include a sum on all scatterers and an integration yield a series solution for g(r) in the form [see
over the volume of the system. Fisher [1965] corn- Wertheim, 1963]
ments that the P-YA is a strong statement of the
extremely short range nature of the direct correlation y(r) =

Sg.(r) (9)
function. For impenetrable spheres, the range of the
interparticle potential is 2a. The integral equation
has the form [see Percus and Yevick, 1958] given by where

r(r) = 1-+ nO J :(r') dr' - no  f (r')r(r - r') dr' gr) =- e " "[Lt) IS(t)]"t di (10)
r' <2.'

-,, 2aSt = (I - q 2)3 + 6 (l - ql2 + 18 12t - 12t(I + 2)1 (11 I)(6)"

where ) = 12[ul + 12)t + (I + 2p?)] (12)

r) = (r) r > 2a Throop and Bearman [1965] have tabulated g(r) as a
function of r for values of q = c18. A few repre-

yqr) = 0 r < 2a sentative plots of the Percus-Yevick (P-Y) pair corre-

(7) lation function are shown in Figure 1..'T(r) = - Or) r < 2a
Another approximation to g(r) is the hypernetted-

-, C(r) = 0 r > 2a chain equation (HNC) which differs from the P-YA

in that the direct correlation function Cfr) has a
Wertheim [1963] has solved the integral equation by longer range. In general, P-YA is expected to be
Laplace transformation that results in an analytic ex- better than HNC. The P-Y and HNC results are
pression for C(r) in the form good approximations to g(r) at low concentrations

C(r) = -(I - 1) -'[(! + 2#)2 - 6iflI + n)2r but are appreciably in error at high concentrations.
+ +=At low concentrations, a series expansion can be+ 71 +.2)zr 3 2 7-- c8obtained from (6) by iterating in powers of n0 . This

where c is the effective spherical concentration of the power series in density is the virial expansion and has
particles. The P-YA fails as the concentration ap- been used at low frequencies by Twersky [1977.
proaches the close packing factor for spheres and is 1978a, h, c], Bringi et al. [1981, 1982a. b], and
expected to be good for c < 0.3 or 0.4. Varadan et al. [1982]. For the leading terms, (6) is
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I Concentron 0 the P-YA are in appreciable error. The reason for

this error is that when an approximate theory such
g," • I • +Q3 e CoS. -') as P-YA for g(r) is used to calculate the pressure, two

. -: I different values are obtained from the pressure equa-
-r.E00tion and the compressibility equation:

_.0 Hole correction p no- - NJ1 n'r(r. n') dn' dr

,- •." !(16)

p= no K9' I + r(r)r Ve,),OST dr

0- o 2 where KB is the Boltzmann constant and T is the
x system temperature. For hard spheres,

Fig 2. The P-YA, hole correction, virial expansion pair aorre-
lation functions. and pair correlation functions based on module V(r) = oo Irl < 2a

histogram for impenetrable spheres. V(r) = 0 r] > 2a

which shows that the system is independent of tem-
written as [see Percus and Yevick, 1958] perature but depends only on number density or con-

- (centration. An exact theory for g(r) should give the
-. r,z = 1 + no ff 2 3 r,3(r 3 - I) dr3  same calculated pressure from both equations. Row-

:*'. linson [1965] has suggested a method known as the
4- +n o f 2 3 f, rz~r1.dr3  (13) self-consistent approximation (SCA) for optimizing

f the P-YA and removing the inconsistency in the two
with pressure equations (16) by assuming that the direct

fij = - I r,, I < 2a correlation function may be written as

= - 0 1 r,jI > 2a CscA(r) = Cp-YA(r) + OCaNNr) (t8)

C iaa where 0 is an adjustable parameter which depends, .C o m m e n c i n g a t r 2 = , o n e c a n r e a d i l y i t e r a t e o n c n e t a i n b t n t o n s p r toa n S A i, power series to obtain on concentration but not on separation r and CscA is
the self-consistent approximation of the direct corre-

r=1 +no f3ff dr3 + n Uff[f, ff lation function. Using (7) and (18). the two pressure
f 0 ffequations (16) that depend on g(r) are solved self-

+ 2f3 f,. ft., f241 dr3 dr4 + (14) consistently by adjusting the function 0 and lead to
Fp reean integral equation for q(r) which is then solved
For hard spheres, g(r) can be determined exactly to numerically. At higher concentrations, the SCA is
Oln3) [see Percus and Yerick, 1958; Twersky, 1977, thus an improvement over the P-YA and HNC ap-T 1978a, b. c] given by proximation. From (18) it is obvious that when
gr = 1 r >b2a = 0, (18) reduces to the P-YA, whereas if 0 = 1. itgives the HNC approximation. Reed and Gubbins

+ ait + --- a <r< 2a (15) [1973] have provided tabulated values of gsc,(r) for
3 16,3 0.0524 < c < 0.417 and for 1.0 5 r < 5.0, and a gen-

0 y <ea eral computer program for computing gsc, is given
by McQuarrie [1976]. Tabulated values of qsCA(r) are

but a slight discrepancy has been observed in O(n ) also given by Wars and Henderson [1969], but they
[see McQuarrie, 1976] because of the approximation are not useful for computations because the values of
in the P-YA. The variation of q(r) in terms of virial g are given only for a short range of r. Monte Carlo
expansion is shown in Figure 2. At low frequencies, a calculations for q(r) are done, and their values are
relatively simpler form of a(r) given in terms of trig- tabulated by Barker and Henderson [1971]; they

LA onometrical functions as shown in Figure 2 may also cannot be used for computations for the same rea-
be used. sons. However. the values given by Barker and Hen-

,.. -At higher concentrations, the values of q(r) using derson [19711 provide a very good check for higher-

-i .
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Fig. 5. Im (K,k) versus concentration using the self-consistent
Fig. 3. The self-consistent pair correlation function for hard' radial distribution function..'- spheres.

virial coefficients. The computer program given values). Computations of coherent attenuation Kk
oderk byal cfiients.The [19 u prerabien as a function of frequency (or ka) and concentration

in the work by McQuarrie [1976] is thus preferable are performed by determining the singular values of
for computational purposes. A representative plo the coefficient matrix obtained from (4a) and (4b)

versus r is shown in Figure 3. using the self-consistent radial distribution function.

COMPARISON WITH EXPERIMENTS (K/k)2 is the effective dielectric constant of the bulk
random medium relative to the background water

Extensive propagation experiments have been con- medium. Figure 4 shows computations of Im (K/k) as
7- ducted by Jshimaru and Kuga [1982] where the dis- a function of concentration for ka values of 0.529 and

crete random medium comprises a collection of 0.681 together with the experimental points of Ishi-
nearly identical latex spheres embedded in water and maru and Kuga [1982]. Note that the original experi-
illuminated with a HeNe laser (;. = 0.6328 m). The mental points have been converted to Im (K/k) by
coherent wave attenuation is measured over a range using a normalization value described by Ishimaru
of concentrations (up to 40%) and for a number of and Kuga [1982]. The comparison between theory
equivalent particle sizes (low. Mie, and optical ka and experiment is seen to be excellent even at high

concentrations. In Figure 5 we show computations of
Im (K/k) versus concentration of ka values of 3.518

769 and 7.28. Again the experimental points are seen to

f 2 52t7 be in excellent agreement with the computations.
Even though the experiments were not conducted at
c > 10% at these ka values, the behavior of Im (Klk)

-,d"8 is correctly reproduced by the self-consistent radial
... distribution function. In Figure 6 we compare our

"i- S 0.0 " M9 computations with the experimental results of Ishi-
maru and Kuga [1982]. The parameter y = 2K,1no a,
where K 2 = Im (K), no is the number density, and a,

.s -3 £9821 is the extinction cross section of a single sphere. We
F remark that noa, is the approximate value of the

attenuation at very low concentrations. Hence the
0_ 12, 04 parameter y is the attenuation at any concentration

-"r'-" =normalized to the low concentration limit. Thus, as

Fig. 4 Im (K k) .ersus concentration using the self-consistent c -- 0. y - 1. Further, as explained by Ishitnaru and
radial distribution function. Kuga [1982], since the latex spheres used in the ex-

,* ~~~~~.° ".-.. -".•............... +, ,-.-+- "."-.., ....... , . . .',, ,, ..
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*Fig. 5. Imn (K/k) versus concentration using the self-consistent
Fig. 3. The self-consistent pair correlation function for 'hard' radial distribution function.

spheres.

values). Computations of coherent attenuation K/k
order virial coefficients. The computer program given as a function of frequency (or ka) and concentration

orin the work by McQuarrie [1976] is thus preferable are performed by determining the singular values of
"*s for computational purposes. A representative plot of the coefficient matrix obtained from (4a) and (4b)

gscA(r) versus r is shown in Figure 3. using the self-consistent radial distribution function.
I W(K/k) 2 is the effective dielectric constant of the bulkSCOMPARISON WITH EXPERIMENTS random medium relative to the background water

Extensive propagation experiments have been con- medium. Figure 4 shows computations of Im (K/k) as
ducted by Ishimaru and Kuga [1982] where the dis- a function of concentration for ka values of 0.529 and
crete random medium comprises a collection of 0.681 together with the experimental points of Ishi-
nearly identical latex spheres embedded in water and maru and Kuga [1982]. Note that the original experi-
illuminated with a HeNe laser (,;. = 0.6328 m). The mental points have been converted to Im (K/k) by

. coherent wave attenuation is measured over a range using a normalization value described by Ishimaru
of concentrations (up to 400%) and for a number of and Kuga [1982]. The comparison between theory
equivalent particle sizes Ilow. Mie, and optical ka and experiment is seen to be excellent even at high

concentrations. In Figure 5 we show computations of
Im (K/k) versus concentration of ka values of 3.518

769 and 7.28. Again the experimental points are seen to
* be in excellent agreement with the computations.
fLT 2 52t7 Even though the experiments were not conducted at

"" c > 10% at these ka values, the behavior of Im (K k)
....0 6,0"is correctly reproduced by the self-consistent radial

distribution function. In Figure 6 we compare our

, a0,29 computations with the experimental results of Ishi-Emaru and Kuga [1982]. The parameter .= 2K2 'no or,
,. - [9821 where K2 = Im (K). no is the number density, and a,

is the extinction cross section of a single sphere. We
I r remark that noa, is the approximate value of the

'651 attenuation at very low concentrations. Hence the
05 parameter 7 is the attenuation at any concentration0 ": )4 normalized to the low concentration limit. Thus, as

Fig. 4. Im (K k) verius concentration using the %elf-consistent c-. 0, ' . . Further, as explained by Ishimaru and
radial distrihution function. Kuga [1982], since the latex spheres used in the ex-
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Fig. 6. Plot Of1 = 2 lm K/noa, versus concentration where no Fig. 7. Attenuation constant 2 Im (K'k) versus concentration
is the number density and a, is the extinction cross section of a for ka = 11.8 using the 'well-stirred' (effective concentration)

, single sphere with relevant ka. radial distribution function. The experimental points are taken
from Hawley et al. [t967].

periment were not exactly identical, the measured
value of the attenuation at c 0.0038 did not exactly the close packing factor for spheres and are expected
correspond to no a, where a, was computed at the to be good for c < 0.42.. Thus, based on the results

S-. average measured radius of the sphere. In order to presented in Figure 7, the coherent wave attenuation
take care of this discrepancy, the measured value of is less sensitive to the precise form of the pair corre-

*.-. the attenuation 2 at low values of c was used to lation function at high concentrations for relatively
define the effective radius a, of a sphere which pre- high values of ka.
dicts the correct attenuation in the single-scattering
approximation. All experimental results were nor- CONCLUSIONS

malized with respect to 20 = no,(o~tt) and I =Thus in all comparisons we have also normalized the This paper has highlighted the comparison be-Thcomuted alu o s we by usinhave efecv n rmalizedius tween theory and experiments for coherent wave at-com puted value of ., by xto  using the effective radius t n ai n i i c e e r n o e i m u t p eI! supplied in Table i of lshimaru and Kuga [1982]. The tenuation in a discrete random medium. Multiple-
computations are in excellent areend with xp.ri- scattering effects must be considered for volume con-

comutaion ae i exellntagreement with experi- centrations exceeding around I'%, especially for kament for ka values of 3.518 and 7.28 (see Figure 6). values of n 10. At higher concentrations (c ; 400)
Note the sharp decrease in 7 for c >_ 10%, especially ad o ka 10 ther ohenra tion
for the ka value of 7.28. The dramatic importance of fnction is er impor of a di10.bcal-"multiple scattering is seen clearly from Figure 6 for function is very important. At values of ka > 10, cal-
Sulthi satt eoferin isdseenpclearly fro Figue 6 culations show that the coherent wave attenuation is
cless sensitive to the precise form of the radial distri-

In our previous paper [Bringi et al., 1982a, b] we lbto fntion oputis and exerial re--"' bution function. Computations and experimental re-
observed that at higher values of ka, a less rigor- sults suggest that at high ka values the simple well-
ous form for the radial distribution function stirred' a atin for the sibution"- lr)= 1(1 -c) may suffice even at relatively high stirred' approximation for the radial distribution
-r) (1 mnfunction (g(r) = l!'( - c). r < 2a; ,qr) = 0, r > 2a)
concentrations (c > 40%). It is important to note
that at wavelengths comparable to obstacle size and may suffice even up to high concentrations. The the-

higher, the scattering is mostly in the forward direc- oretical procedure described in this paper agrees very
well with experiments over a wide range of con-" tion. Thus, in this case, repeated scattering should"'-. centrations and ka values, 0 < c' < 40. and

not be im po rtant, since the backscattered w ave is 0 < k-a 1 . Ofd course l these co< c usions als

significantly smaller than the forward scattered wave. 0 < ka < 10. Of course, these conclusions also
This may explain why the computations shown in depend on the scatterer properties relative to the em-

Figure 7 for ka = 11.8 are in reasonable agreement bedding medium.
*with the experiment done by Hawley et al. at higher
* -,,, values of concentrations. It should be noted that the 4ntIcIt,'ts. h work %%as supported by the U.S. Army

, ,P-YA and SCA fail as the concentration approaches Rescarch Officc under contract I)AAG29-X2-K-()I3 to Ohio

-% _
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Coherent attenuation of acoustic waves by pair-correlated random
distribution of scatterers with uniform and Gaussian size
distributions

V. K. Varadan, V. N. Bringi,4' V. V. Varadan, and Y. Ma
Wave Propagation Group, Department of Engineering Mechanics, The Ohio State University. Columbus, Ohio
43210

(Received 17 October 1982; accepted for publication 6 February 1983)

Acoustic wave attenuation due to multiple scattering in a two-phase medium consisting of a fluid
with embedded rigid, fluid, or elastic particles of varying sizes is discussed. The formulation,
involving the exciting and scattered fields of an incident acoustic plane wave, is based on the T-
matrix method. The propagation features of coherent waves in the mixture are described by the
dispersion equation which is derived by applying standard statistical approximations to the
discrete random medium. Special attention is focused on the pair-correlation function between
the scatterers using the self-consistent approximation (SCA) which seems better than the Percus-
Yevick approximation (PYA) when the volume fraction becomes significant. Besides deriving
low-frequency analytical results for coherent wave speed and attenuation, the dispersion equation

. has been solved numerically for higher frequencies for particles with uniform and Gaussian size
" distributions.

PACS numbers: 43.20.Fn, 43.20. Hq, 43.20.Bi

INTRODUCTION multiple scattering formulations capable of uniformly han-

A study of wave propagation in a multi-component flu- dling both the asymptotic and intermediate frequency
id medium is helpful in analyzing the gross properties of the ranges and based on realistic particle distributions and cor-

mixture as a whole. The propagation and attenuation results relation effects were developed only in the last few years.

derived from a typical investigation yield data that are valu- In this paper the multiple scattering of acoustic waves

U able in various practical situations. by suspended particles is described using the T-matrix (Wa-

In formulating the theory for sound propagation in a terran '4) to characterize the single scatterer response and a

.. fluid-particle mixture, two fundamentally different ap- configurational average over the random positions of the

proaches have been followed in the literature. In the first particles. The method presented leads to a computational

approach, the solid particles are treated as scattering centers scheme that is suitable for scatterers of arbitrary shape, ori-

and a set of coupled equations is formulated to describe the entation, dense concentration, and at wavelengths comparw

. multiple scattering. By computing the acoustic fields result- ble to scatterer size. The complex, effective wavenumber in

ing from this scattering phenomenon, one arrives at formu- the random medium is computed as a function of frequency.

las for the bulk parameters characterizing the medium. In It is observed that the results crucially depend on the volume

the second approach, the field variables characterizing the fraction c, and for c > 0.1 the effects of the pair correlation

medium are related through usual conservation laws and the function for the given distribution is significant especially at

response of the medium to incident acoustic pulses are de- lower frequencies. Accordingly, improved pair correlation
em rived from nonequilibrium thermodynamic considerations functions using the self-consistent approximation (SCA)

coupled with the hyperbolic nature of the governing system. have been incorporated into the numerical algorithm. The

The results accrued from both these approaches are largely SCA is a linear combination of the Percus-Yevick (PYA)

seen to complement each other although a particular prob- and the Hypernetted Chain (HNC) approximation to the

lem may entail selection of either of the procedures in prefer- pair correlation function. This enables us to get numerical
; ence to the other. results for c-0.35. Closed form expressions for the phase

For suspended particles, multiple scattering theory velocity and attenuation are presented in the long wave-
combined with suitable statistical approximations lead to re- length limit.
suits that are valid for a wide range of frequencies. This ap-

proach takes account of the microscopic features of the scat- 1. MULTIPLE SCATTERING FORMULATION
• terers, the effects of which are finally reflected in the It

coherent wave analysis. Although rigorous theoretical in- In the present study, the scatterers are assumed to be
tooeither rigid, fluid, or elastic whose properties differ from the

vestigations of the acoustic wave attenuation in a fluid-parti- ebdigfudmduwih o l rcia upsscle medium can be traced to the work of Sewel,' systematic embedding fluid medium, which, for all practical purposes,
.. , m c t twill be assumed here to be inviscid liquid akin to seawater.

"'V. N. Bringi is with the Department of Electrical Engineering, Colorado The present formulation deals with the multiple scattering
State University. Fort Collins, CO 80523. effects of the solid phase on the coherent wave attenuation.

- 1941 J. Acoust, Soc. Am 73 (6), June 1983 0001 -4966/83/061941-07$00.80 c 1983 Acoustical Society of America 1941
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Consider N identical, arbitrarily shaped random scat- 0
terers with smooth boundary surface S in an infinite fluid g "(r) = 9 e g P ,,,, Re 7r)1

medium which are referred to a coordinate system centered
at 0. The points 0, and 0 denote the centers of the ith and where g o,,. is the known incident field coefficient,!, and
jth particles, respectively; and they are referred to the origin a,,, are the unknown scattered and exciting field coeffi-
by the spherical polar coordinates (r,, 0,, ,.Pisany point in cients, respectively. The exciting and scattered fields are

M the medium outside the scatterers. Let a time harmonic then related by
compressional wave of unit amplitude and frequency w be

* " incident on the scattering medium. Suppressing the time de- Re iP1.,(r-rj)

pendence of all quantities, we represent the pressure field
corresponding to the incident wave in the form = I+ I ,, Ou I ,mo~r-r. -

6 0= e,,(I) The T matrix'" can be used to relate the exciting and
* where k is the acoustic wavenumber, k = ws/cf. The sound scattered field coefficients pertaining to a single scatterer as

speed cf is given by (flpf)' /2, where A, and pf are the com- follows
pressibility and density of the fluid, respectively. We denote
the compressional and transverse wave speeds in the elasticfo = Tt,,,, -a ,. , . (9)

"-; scatterer by c and c, given by c, = [(A + 2)/pl" and
-c, = [pp)]", respectively, where A andp are Lame's con- The right- and left-hand sides of Eq. (8) refer to two

stants and p is the density. For a fluid scatterer, c = [(A / different origins (the centers of the ith and jth scatterers,
. p)]";, where A and p are the compressibility and density of respectively). This is remedied by invoking the translation-

the fluid, respectively, addition theorem for the spherical wave functions6 and the
The total pressure field at any point outside the scat- orthogonality of these functions can be used to extract a set

terers is given by, of linear matrix equations for the exciting field coefficients.
The details of these steps have been described in Refs. 17-19.

- (r) = 0 °(r) + I r,), (2) Performing the above operations and further assuming that
i =' the scatterers are identical we obtain for N-. o,

where ;(r - rj) is the field scattered by thejth particle to the

point of observation r. a ,ee Oo

We now observe that the field . exciting theNth scat-
terer is the resultant of the incident field 1 O and the scattered + (N- I) ,,,t,.oa .,,.-5 field from all other scatterers so that r

,v e~r).0(r) +rI - r,), (10)
*Ir) = 4. °(r) + i ;(r-r,); a< lr - r, I 2a, (3) where ojr, - r,) is the translation matrix, the detailed form

of which is not presented here.
- where a is the radius of the sphere circumscribing the solid If the scatterers are not identical but there is a distribu-

particle and the superscript e refers to the exciting field. We tion of sizes, then we may replace Tin Eq. (10) by the average
n also assume that the transparent spheres of radius a circum- T matrix (T ) defined as

scribing each particle do not interpenetrate.
The multiple scattering formulation developed here is (T) = T(a)q(a)da, (1)

based on the T-matrix approach, see for example, Varadan
and Varadan.' 5 We first expand the field quantities in terms where q(a) is a function specifying the size distribution of
of spherical wavefunctions particles assuming that they are all of the same shape. In

order to further refine the calculations one may want to per-
Ou } h(krJ (4) form the average in Eq. (11) only after introducing the con-

" .. Re (kr) I figurational average since the nearest distance between par-
ticles is a function of their size. To a first approximation, we

where h, are the spherical Hankel functions, Yj,,,, the nor- canuse (T) in Eq. (10) and useil the mean radius to describe
malized spherical harmonics, and j, the spherical Bessel the particle size.
functions; a = e or o refers to the even or odd parity of the
angular dependence, I = 0,1,...; m = 0, I,...l.

As usual, the field quantities that are regular at the ori- II. CONFIGURATIONAL AVERAGE AND THE PAIR
gin will involve the spherical function j, instead of hi. We CORRELATION FUNCTION
thus write For a system with a large number of scatterers, it is

more meaningful to study the effective propagation charac-
:,ri = . _ f,,,, Ou ,,(r-r (51 teristicsinthemediumratherthanthedetailsofthemultiple

scattering processes that take place. Thus a configurational
average is performed in Eq. 110 over the positions of all

"."rt= a ,,,,, Re P '.,,,,(r-r,), 1 particles except thejth which is assumed to be held fixed. We
,: o ,, .thus have
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,'4.,=o +Equation (16) is a system of linear simultaneous equa-=a,,, e +kr , v- l+ (N
,. I, tions for the coefficients X,. For a nontrivial solution of the

coherent field we must require the determinant of the coeffi- - -

X - r,)p(r, r )dr,, cient matrix to vanish. This is the required dispersion equa-
tion which can be solved for the effective propagation con-

(12) stant K as a function of k = /cf and c. The determination of

where 0, denotes the configuration average with the ith K from Eq. (16) is necessarily numerical except in the long

scatterer held fixed andp(r, r,) is the conditional probability wavelength limit. This will be discussed in the next section.

distribution function. We now proceed to discuss the forms of g(x) that will be used

Equation (12) is a hierarchy which when iterated will to numerically evaluate I. a be o re d

involve higher conditional probability distribution func- Several models of g(x) are available. For uncorrelated,

tions. The hierarchy is truncated by invoking the quasi-crys- impenetrable particles

* talline approximation (QCA) first suggested by Lax2' which 11/(1 - C), x > (20)
works surprisingly well for a wide range of concentrations. g(x) = 10, X < 1.20
According to the QCA This approximation for g(x) refers to Talbot and Willis,2 '

(a'.,..,.),j = (a'.,.. ),. (13) known as the well-stirred approximation (WSA), and is ex-

To study the coherent or average field in the effective pected to be valid for low values of c, and as discussed by

medium, we assume that the average field is a plane wave Bringi et al.,9 fails at c > 0.125. For concentrations c < 0.125,

propagating in the same direction ko = 2 as the original there is an analytical form for g(x) due to Matern. 2 Twersky.

plane wave but with a complex propagation constant has used a virial expansion to obtain g(x) shown as

K = K + iK2 which is frequency dependent. The real part 0, x < I
K, is related to the phase velocity and K,, the imaginary part g(x) = I + 8c(l - 3x + A x 3), l<x<2 (21)
is proportional to the attenuation constant. Thus x>2

(14) which is valid at low concentrations.

In order to complete the integration in Eq. (12), the joint Improved models of the pair correlation function valid
probability function must be specified. It is convenient to for concentrations up to 40% are the Percus-Yevick approx-
write imation (PYA) and the Hypernetted-Chain approximation

f (r, ,r,} -- lg(x)/V, x > 1 (HNC). The Percus-Yevick model23 has been solved analyti-

0, x < !, cally by Wertheim24 for the case of hard impenetrable parti-
where we have assumed that the particles are impenetrable cles. It is expected to be somewhat better than the HNC.25

and that for a translationally invariant system, P (r, I r,) de- One of the defects of the PYA is that the two equations that

pends only on r, - r, I = 2ax where 2a is the hard core radi- can be derived for the pressure P in a fluid containing "hard"

us or the minium distance between particles, each of radius particles lead to different answers when the PYA for g(x) are

a. In the statistical mechanics literature g(x) is known as the substituted in them (these equations are derived by Percus2').

radial distribution function. Rowlinson-' remedied this by assuming that the direct cor-

Equations (13H 15) are substituted in Eq. (12) and the relation function which is the short range part of the correla-

extinction theorem can be invoked to cancel the incident tion function is a linear combination of the ones resulting

wave term on the right-hand side of Eq. (12) with part of the from the PYA and HNC models. They were combined with . -

second term (refer to Ref. 18 for details). The resulting equa- an adjustable parameter 0 and the two pressure equations

tion is were solved simultaneously for P and (. This is called the
self-consistent approximation ISCA) and it is valid for higher

' X. = lT, ,,.T . concentrations than the PYA and HNC models.
"'/k = . '(1+l.(,-'o,,A)HA.16

X i -'(2/+ l~a(O,l 0,1 JH, III. RAYLEIGH LIMIT SOLUTION
x (I - t+ ,1The dispersion relation derived from Eq. (16) can be
x ( 6c/((ka 2 

- (Ka(2 [ + 24 ), (6 solved in detail to predict the attenuation features and wave

where speeds of coherent acoustic waves in the two-phase medium.
Although the system of equations requires a numerical ap-

JHA = 2kajA 2Ka)h " (2ka) - 2KahA (2ka)IA (2Ka), (17) proach to yield solutions for higher values of frequency, ana-
_" a(0,'0.1 ) - 12A + l,o0 ]1 (18) lytical results can be obtained for low-frequency approxima-

where t is the Wigner 3-j symbol.' tions. Including the effects of correlation between particles it
is ,een that an attenuation factor is obtained even in the low-

1-4 f x :[ g(X - Ii j 2KaxrlhA 2kaxdx. 19) frequency approximation. Analytical results are seen to
mainly depend on the form of the correlation assumed. Us-

and c = (4,r/3,a'.V /V is the fractional volume occupied by ing, for example, the gjx( given by the virial series, Eq. 121),
the particles, and for leading order in ikal, dispersion equations can be

- 1943 J Acost Soc Am ioi 73. NO 6. June 1983 Varadan eta/ Pair corre'aed scatterers '943



,. derived from Eq. (16) for all the three types of scatterers, 10
"s 

-

b namely rigid, fluid, and elastic spheres. We get for the real
and imaginary parts of the effective wavenumber

l(Kk) 2 = (1 + ac)(l - 8c)/(l + 2,c) (22) L

and

2(K,/K) = (ka)3(l - 8c + 34C2 )

X [a 2/(l + ac) + 301 Z/( 1 + 26c)( 1 - 9c)]/3, <IO -
..- ~(23) .".

wher Rigid Sphereswhere ko= 0.05 ;

I* - 1 rigid

I.a= fG (5), fluid sphere,
2 4pC2 1 0.0 0.5 OJO 05 020 025 0.30 0.35-P/C;i] 3 y a - elastic C c nrie n r:•

"-" c(24) FIG. I. Coherent wave attenuation versus concentration for ka = 0.05 for{ -~ rigid rigid spheres embedded in water.

Prigid

s6  + 2P G(a), fluid sphere. low values of ka as higher approximations would lead to
Pf" -P unwieldy expressions. A quantitative estimate of the multi-

' elastic pie scattering process at resonant and higher frequencies can
- + be obtained by numerically solving the dispersion equation,

Eq, (16). In fact, detailed numerical results can be obtained
For a uniform size distribution G (a) = 1, while for the Gaus- for rigid, fluid, or elastic scatterers of different geometries as
sian size distribution G (a) is given by the only additional input parameter in such cases is the ap-

propriate Tmatrix. The computational scheme has been de-
, exp 21) scribed previously and will not be repeated here.- .

Essentially, the solution of the dispersion equation de-
5[ n ( )(m)' rived from Eq. (16) valid at higher frequencies involves an
1.5[2 - exp v iterative procedure for determining the dominant root in the

_a2e -2 complex plane in terms of ka. Although the algorithm used
* +3 ~.exp( 2) l

+0.5 [1+ e ,(25) 10

where m is the standard deviation. When the concentration :" °  7is higher than about 5% the term (I - 8c + 34c2) is replaced r 4
by ( - c)'/(l + 2c)" in Eq. (23) to correct for the higher con-

:centration using the Ornstein-Zernike equations for g(x). At
low frequencies the attenuation is due to multiple scattering •
alone since the scatterers are assumed lossless. However,
losses due to other factors such as viscosity, friction, etc., , 4

-' may dominate the scattering losses (which are proportional "
to k a) at low frequencies. At higher frequencies, the multi-
pie scattering losses increase significantly and may dominate Ho H tons Ept points
the viscous or frictional losses. Methods of introducing these Rigid Spheres I
additional loss mechanisms into the current theory are un- ka- 0.6
der investigation by the authors.

SIV. PHASE VELOCITY AND ATTENUATION AT HIGHER 0.0 0.1) O 0.2 0.3 0.4 0.5

FREQUENCIES Concentrotion c

The analytical expressions for wave speed and attenu- FIG. 2. Attenuation in dB/ft versus concentration for rigid spheres for .

ation factor as obtained above coulH be derived only for very ka = 0.6.
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appears to be insensitive to considerable deviations from the _-,_-

true solution, good initial values are provided by the low- .10..

frequency results of the previous section. As expected, the Elsic Sphere kd= 0.1 Cf=1500 M!'-? Cf =6376m/s

order of the coefficient matrix that has to be retained in the r c= 20
amplitude equations for a convergent solution is directly p, =2.705/cus

proportional to the frequency. The same is also true with
respect to the size of T matrix.

In Fig. I we show the imaginary part of the propagation
constant K/k for rigid spheres immersed in water with " .
ka = 0.05 where k is the wavenumber of the incident acous-
tic wave in water. The curve depicts the correct functional i -
form for K 2 vs c and shows a broad maximum in the range (m /
0.15 <c <0.20. At higher concentrations, the attenuation -
decreases implying that the random medium appears more
homogeneous with "restricted" randomness. In the limit full
packing (c-0.64 for spheres), the attenuation should attain a

*fixed value consistent with a bulk rigid medium. The form
: forgfx) in the limit or full packing is not known, hence com- s -00 005 010 015 020 025 030

putations could not be performed. 00 c

In Fig. 2 we show a similar plot of coherent attenuation Concentration c

versus concentration for rigid spheres in water for compari-
son with measurements conducted by Hampton." Note that FIG. 10. Attenuation coefficient versus concentration for elastic spheres
the ordinate scale is in dB per foot where dB/ft = 1109(K/ with Gaussian size distributions.

k ). The value of/ka is chosen to be 0.6 so as to yield computed
P attenuation values in the range observed by Hampton (his

experimental points are shown by circles in Fig. 2). His ex-
periments involved clay particles in a polydisperse distribu-
tions embedded in water with maximum ka values much range of concentrations. In Fig. 3 we again show K2/k versus
smaller than 0.6. Computation at such small ka values yield concentration for ka = 1.0. Figure 4 shows the phase veloc-
attenuations which are much smaller than observed since K, ity in the bulk medium relative to the phase velocity of theU is of 0 (k -a3). We conclude that the experimentally observed background medium in which the scatterers are embedded.
attenuation is due to loss mechanisms other than multiple At higher concentrations there is evidence of dispersion as
scattering. In any case the present computations agree favor- seen by the separation of the ka = 0.5 and ka = 1.0 curves.
ably with experimental values at ka = 0.6 showing the ob- The bulk or composite medium supports "slow" acoustic
served functional dependence with increasing concentra- waves when the scatterers are rigid.
tion. Note that the computed attenuation is due to multiple Computations were also performed for fluid and elastic
scattering losses only. For c > 0.05, the single scattering ap- scatterers with the only change in the computation occur-

.'. proximation significantly overestimates the attenuation, in- ring as a result of the appropriate T matrix 0 '3' in Eq. (16).
creasing without limit as c approaches dense packing. The The acoustic parameters of the fluid scatterers and the sur-
self-consistent form forgfx) appears most suitable for the full rounding fluid medium were chosen to bep = 1.092 g cm

c 1.64X 10 cm/s, and pf =0.021, c1 = 1.55X 105, re-
spectively, where p is the density and c is the sound veloc-

ity These parameters are appropriate for red blood cells
__--, JRB_ in isotonic plasma although a spherical model for the

120 .. ,a, 0 1 RBC is an approximation. Figure 5 shows the computed
C, 2 150oh (-) o 00 ,,,attenuation coefficient as a function of concentration for

c'. 6376"Ys (,).... ."ka = 0.6 and ka = 1.0 using the self-consistent pair-correla-
Cs, 2o (310 N.40. tion function. Note that the computed attenuation is due to
P, = 2 70 9/' " multiple scattering. In Fig. 6 we show the relative phase ve-

/" " Iocity versus c for ka = 0.6 and 1.0 using the self-consistent
Q. -/ --" model. The bulk medium now appears nondispersive and

05 supports "fast waves." In Fig. 7, the phase velocity versusconcentration c is shown for Gaussian size distribution (m/

Z.- $0 0a = 0.18 and 0.4) while the corresponding coherent attenu-
bill 00 - o -,: 6 o 0,o0025 030 035 040 ation curves are shown in Fig. 8. InFigs. 9and 10. the phase

velocity and coherent attenuation for elastic scatterers with
Gaussian and uniform size distributions are depicted. The

FIG O Relat t ephase ehlocty erusconicrt on for elasml phtese% lth properties of the elastic scatterers are taken as c1c, 2.04.

Gausiian %aze distributions P/p, 2.7.
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- appears to be insensitive to considerable deviations from the _4

true solution, good initial values are provided by the low- 10 - --

frequency results of the previous section. As expected, the Elastic .Spee k6= 01 C1 =500 m "
, • . C =6376m/=

order of the coefficient matrix that has to be retained in the C, = 3120 1

amplitude equations for a convergent solution is directly P C, =zz09/as
proportional to the frequency. The same is also true with ----------------
respect to the size of Tmatrix.

In Fig. I we show the imaginary part of the propagation "

constant K/k for rigid spheres immersed in water with ,/
• ka = 0.05 where k is the wavenumber of the incident acous- i /

tic wave in water. The curve depicts the correct functional/
form for K2 vs c and shows a broad maximum in the range ",0/
0.15 < c < 0.20. At higher concentrations, the attenuation T

" decreases implying that the random medium appears more ( - 0 4 0

• homogeneous with "restricted" randomness. In the limit full
packing (c=0.64 for spheres), the attenuation should attain a
fixed value consistent with a bulk rigid medium. The form .. {
for gfx) in the limit or full packing is not known, hence com- 0 0 010 015 0.2 02

00 005 010 015 0.20 025 030

putations could not be performed. Concentration c

- In Fig. 2 we show a similar plot of coherent attenuation
versus concentration for rigid spheres in water for compari-

son with measurements conducted by Hampton. 9 Note that FIG. 10. Attenuation coefficient versus concentration for elastic spheres

the ordinate scale is in dB per foot where dB/ft 1 1109(K 2/ with Gaussian size distributions.

k ). The value of ka is chosen to be 0.6 so as to yield computed
f attenuation values in the range observed by Hampton (his

experimental points are shown by circles in Fig. 2). His ex-
periments involved clay particles in a polydisperse distribu-
tions embedded in water with maximum ka values much range of concentrations. In Fig. 3 we again show K 2/k versus

smaller than 0.6. Computation at such small ka values yield concentration for ka = 1.0. Figure 4 shows the phase veloc-
attenuations which are much smaller than observed since K 2  ity in the bulk medium relative to the phase velocity of the

5 is of 0 (k -a3). We conclude that the experimentally observed background medium in which the scatterers are embedded.
attenuation is due to loss mechanisms other than multiple At higher concentrations there is evidence of dispersion as
scattering. In any case the present computations agree favor- seen by the separation of the ka = 0.5 and ka = 1.0 curves.
ably with experimental values at ka = 0.6 showing the ob- The bulk or composite medium supports "slow" acoustic

served functional dependence with increasing concentra- waves when the scatterers are rigid.
tion. Note that the computed attenuation is due to multiple Computations were also performed for fluid and elastic

. scattering losses only. For c > 0.05, the single scattering ap- scatterers with the only change in the computation occur-
proximation significantly overestimates the attenuation, in- ring as a result of the appropriate T matrix3°'J in Eq. (16).
creasing without limit as c approaches dense packing. The The acoustic parameters of the fluid scatterers and the sur-
self-consistent form for g(x) appears most suitable for the full rounding fluid medium were chosen to bep = 1.092 g cm-.

co = 1.64X i05 cm/s, and Pf =0.021, cf = 1.55 x I0, re-
spectively, where p is the density and c is the sound veloc-

ity. 2 These parameters are appropriate for red blood cells

120. ---O- ' --- t (RBC) in isotonic plasma although a spherical model for the
Elac SOgW k6- 01 RBC is an approximation. Figure 5 shows the computed

C, o 1500s (j) . .00 attenuation coefficient as a function of concentration for
115- C,' 6376")N (f) 0i is ka = 0.6 and ka = 1.0 using the self-consistent pair-correla-

Cs' 3120 " (41)0,40 ... tion function. Note that the computed attenuation is due to

P 2O". 70 -, multiple scattering. In Fig. 6 we show the relative phase ve-
locity versus c for ka = 0.6 and 1.0 using the self-consistent

- o -"° - - .-* - -
' ' "model. The bulk medium now appears nondispersive and

105. supports "fast waves." In Fig. 7, the phase velocity versus
concentration c is shown for Gaussian size distribution (m/
a = 0. 18 and 0.4) while the corresponding coherent attenu-

0_O0 005 0!0 0 6 020 025 030 035 040 ation curves are shown in Fig. 8. In Figs. 9 and 10. the phase
not:ear~onc velocity and coherent attenuation for elastic scatterers % ith

Gaussian and uniform size distributions are depicted. The

-. FIG.9 Relative phas velocity ersus cocent ration for elastl spheres% ith properties of the elastic scatterers are taken as c 1c, =2.04.

Gaussian size distlrbution. PIP, = 2.7.
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ABSTRACT

Acoustic waves propagating through suspended materials with a con-

siderable concentration (1%<w<40%) in the deep ocean environment is

examined. The particles in suspension have a size distribution and their

relative positions are described by the pair-correlation function.

• -Different equations representing the pair-correlation function are

investigated. The characteristics of the multiple scattered waves are

presented as the dispersion of the phase velocity specified by the real

• ipart of the effective wave number K and the attenuation in wave intensity

shown as the loss tangent.

The dependence of the wave propagation on the size distribution and

concentration of particles is also discussed in the low frequency range.

°V..
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INTRODUCTION

I
An acoustic technique has been proposed to investigate the wave

• propagation through the suspended sedimentary particles in a water

mass . The attenuation of acoustic waves by suspended materials in

a fluid medium has been investigated extensivel y2 - 4 and the experi-

mental attenuation coefficients were found to be compatible with those

derived from theory for low concentration cases. However, when the

concentration becomes higher the acoustic transmission and reflection

will be affected differently due to multiple scattering. The single

S
scattering theory which is suitable for a sparse distribution of scat-

terers (suspended particles) is no longer valid for a dense distribution

m" of scatterers since the higher order statistics known as the pair-

correlation6 will be required in the multiple scattering analysis. In

other words, in a medium containing a large number of scatterers the

position of one scatterer is constrained by the other therefore the

scattered field will be affected by such a crowding characterized by a

correlation function among scatterers.

The present study examines acoustic wave propagation through a

considerable concentration of sedimentary particles suspended in water.

7
The quasicrystalline assumption will be used to truncate the hierarchy

5
equations (Foldy-Lax hierarchy ) so that only the pair-correlation between

.& two particles is considered. As can be seen the pair-correlation function

is essential in solving the coherent field. Therefore, the hole correction
8

• 9 10
the virial expansion and the Percus-Yevick equations representing the

pair-correlation function are discussed. However, it can be shown that
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*" all those equations will yield the similar results for moderate concen-

trations of scatterers in the low frequency range.

For practical purposes, a simpler form of the pair-correlation

function for elastic scatterers is given instead of the complex

Percus-Yevick equation. The scatterers with and without size distri-

S"butions are both treated in this study to judge their effects on the

wave propagation characteristics. The results presented as the dispersion

of the phase velocity as well as the attenuation against the concentration

are particularly in the low frequency range.

AF4
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STATEMENT OF THE PROBLEM

P Consider a slab containing a large number of scatterers. A time-

harmonic plane wave of sound is normally incident upon the slab (see

"'" + iwt
Figure 1) along the negative z direction with the time dependence e

U
The incident wave with a unit amplitude can thus be expressed as

.-- ( ) ikz

where k = wave number.

* The scatterers are suspended particles modelled as elastic spheres

whose properties ire shown in Table 1. The surrounding acoustic medium

(covering slab) is water with the properties also shown in Table 1. In

the absence of scatterers from the medium, i( ) will then satisfy the

wave equation

2 2 P + k2 = 0 (1)

-'? However, the average field (coherent field) <p> for any wave in a

* medium containing random particles can generally be expressed by

assuming it satisfies the following wave equation specified by an ef-

, .fective wave number K(sometimes called propagation constant or bulk

-= parameter), i.e.,

72<,> 2 + K2, = 0

- For low concentrations (the number of scatterers in the medium is

" small and the distances between scatterers are large compared to the in-

12
cident wave length) the effective wave number K is well known as hen

including the size distribution,

k.

; -:? : :- ;.ii i : -: ii -::. . .** . i , . i . .: .- , . - . , .. .,- , . ,' . i - _ .
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71;1

2 2-rp 2rK = [k+-k (f(a,Tr) + f(a,o))] [k+LkP (f(a,,) - f(a,o))], (2)

where p = number density (number of scatterers per volume)

f(a,i) = 10 f(a,T) q(a)da

f(a,o) = fo f(a,o) q(a)da

q(a) = the size distribution function

f(a,7T) = the forward scattering function

1
f(a,o) = the backscattering function

Lloyd and Berry 13 modified the above equation using the multiple scattering

treatment as follows

2 2 422 f2 2 1 d 2K = k +4.pf(a,T) + ) v 1fdaf2+f (a,o) .1 - (e)de],
k2 2 de
k 7-"a 

(3)

S.-where

f(6) = 1 (2nl)i(-1)n Pn(COS e).
"= l+iCnn

n=o n

Another frequently used equation for the effective wave number K
16

M is given as,

2 k4of(a,) (47pf(a,n))2 r eikR sinkR g(R)dR, (4)
.. " k

where g(R) is the radial distribution function. Results using Eqs.

(2), (3) and (4) will be examined in this paper.

i

. . .. . .
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Equation (2) can be further reduced to the following form provided

0P<<i '

2 2 2
K = k + 4rpf(alT) + 0 (p) (5)

in which 0 ( ) represents the order of ( ). For small scatterers

and low concentrations a common form used by many investigators is

.* obtained by expanding the square root of Eq. (5) as

K = k + 2npfa-,irT/k (6)

One sees from Eq. (6) that K is actually a complex number due to

the fact that f air) is complex. The real and imaginary parts of K are

found to be

KR = k + 27rp R(a,7)/k
j (7)

K1 = 2TpfT(a,)/k,

where the subscripts R and I denote real and imaginary respectively.

By using the forward scattering theorem which is

41r

as f I (a,7), (8)

the imagninary part of K (also known as the attenuation constant) can

thus be related to the total scattering cross section a as

2K = Pa + (pa) (9)•KI Os a

In Eq. (9) a is the absorption cross section only if the scatterers are
a

absorbent (the absorption mechanisms can be introduced by using complex

°.~
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6

internal wave numbers in the scattering functions f(a,fT) and f(a,o) or

i it will not appear. The absorption effect for sedimentary particles is

small and can be neglected.

Strictly speaking, Eqs. (5), (6), (7) and (9) can only be applied

* to the low concentration cases. Each of the sparsely distributed scatterers

under such circumstance can be treated as independent scatterers, i.e.,

uncorrelated and without interference. Therefore the total scattering

is just the sum of the scattering from each scatterer which is the basis

. of the single scattering theory. A question will arise as to how large a

concentration will make the single scattering invalid? The answer

depends on the type of scatterers being treated. 1 However, a recent

' experimental study by Ishimaru et.al. shows that when the concentration

is greater than about 0.1%, the experimental attenuation constant

I departs markedly from that calculated by single scattering theory.

The term concentration used in this paper is defined as the

volumetric percentage which is the ratio between the total volume of

U scatterers and the volume of the embedding medium. Since the spherical

scatterers are modelled as the suspended particles the concentration w is

-." .thus represented as

w = 4-Da/3,

where a is the radius of the sphere and the overbar denotes the average

quantity.

To examine the effective wave number K for a dense distribution of

scatterers (high concentration) one needs to recall the Foldy-Lax hierarchy

for the coherent field holding more than one scatterers fixed. Fortunately,
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the problem can be simplified without going into higher order statistics

. by using the quasicrystalline approximation to truncate the equations in

order that only the pair statistics between two scatterers is required in

" evaluating the coherent field. Such a treatment is useful in which an

explicit approximation for the pair statistics, expressed as the pair

distribution function g(R) can be introduced to integrate over the total

o* volume to obtain the exciting coherent field. The second equation

in the Foldy-Lax hierarchy using the quasicrystalline approximation can

generally be written as

> = i() + o f g(i- .)f(a,a) <Ip( i  A E( i- j) (10)
J J inc j

* where <i1 (A)>. = the average exciting field of the jth scatterers with

its position held fixed

N , incj) = the incident field at R.

t(a,a) =fo f(a,6) q(a)da

= the average exciting field of the ith scatterer with

its position held fixed

E(= propagation function of the scattered waves

4dR. 4R 2dR for the radially symmetric scatterers1
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SOLUTIION FOR RADIALLY SYMMETRIC SCATTERERS

The effective wave number K for a dense distribution of pair-correlated

scatterers can be obtained using Eq. (10) as follows9

U K~2  i2 47j.2 ~ f 2n (1

n=o

where n=K/k

A =kf (1a1 ) (n mH
n n n nm

f (a,1T) =f (a,Tr) q(a)da=

f (a~) =(2n+l)i

l+iC
n

n~m! 0 0 n~ m+n _1m
H dm(; ) +~ N

m n m k (12)2_

1 2
Nm + i Nm

(KR spherical Bessel function

h -kR) =spherical Hankel function of the second kind
m

g(R) =pair-,-orrelat ion function

dn0 ;0 )=Lncmr pninfo
n m

n~m
P (X)P Wx = q( ')P Wx

n m n~ nm q

p (x), P (X), P (x) Lengendre polynomials
n m q



9

dq( ;0) has the following properties
n m

dq(n;m ) = dq(m;n)

0 0 0 0 0 0
do(n;) + d(n) ... + dq(;) = ,q = m+n

ddd ;°) = 0 , m+n =even

den ) = 0 , m+n = odd

For monopole and dipole cases
0 0 0 0

d (o 0 d l(o 1)  1

For the low frequency case, only the monopole (each scatterer, i.e.

sphere, is compressed and expanded by the incident condensations and rare

1 factions and a spherical wave is thus radiated - this monopole type

radiation is dominated by the compressibility of the scatterer and is

independent of directions) and dipole (the scatterer's inertia causes the

scatterers to have a motion which is equivalent to the surrounding medium

being at rest and the scatterer being in oscillation - this dipole type

reradiation is affected by the density of the scatterer and depends on

the scattering angle e) terms are important in doing the computation.

Therefore only two terms in Eq. (11) are required and a closed form solution

can be obtained. However, more terms are necessary in the high frequency

range which make the calculation for K a tedious job and only a numerical

approach is possible at the present time. This can be done by the

computer for a wide frequency range by selecting a suitable number terms

to achieve convergence. The acoustic scattering analysis for suspended

particles in the high frequency range will be discussed in a later paper.

,. , . -. . . . . . .
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Now one can compare Eq. (11) with Eq. (5) to see the difference. To

study the wave propagation through a sparse distribution of scatterers

2 does not involve the iterative solution for K which is instead required

for a dense distribution of pair-correlated scatterers. The effective
U

wave number K in a medium containing scatterers of low concentrations is

essentially a slight perturbation of Eq. (11) with n-l. One also sees

- from Eq. (12) that in order to obtain Nm the pair-correlation function

(or the radial distribution function for the radially symmetric scatterers)

g(R) needs to be specified first. If there is a closed form expression

for g(R), the computation can be made much easier depending on how simple

the form is.

m

'4
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RADIAL DISTRIBUTION FUNCTION

Several radial distribution functions (for the radial symmetric

scatterers the pair correlation function g(R) is called the radial

14
distribution function g(R)) have been applied successfully to analyze

the multiple scattering of waves by a random distribution of pair-correlated

scatterers. The commonly used hole correction equation has been proved

9
to be a poor approximation for appreciable concentrations. Twersky used

the virial expansion equation which is an iterative solution for the

Percus-Yevick equation for impenetrable scatterers to obtain the effective

wave number K for the low frequency range and moderate concentrations.

To make the calculation easier the following form is proposed to

avoid a more complex form in the expression of the Percus-Yevick equation.

. That is

0 , R <b'
g(R) B(w)CR-b') (13)

-41+A'(w)e cosC'(w)(R-b,) , R > b'

where A'(w), B'(w) and C'(w) are functions of the concentration w and b'

the separation distance (exclusion length) between two scatterers. For

different scatterers with different distributions A'(w), B'(w) and C'(w)

have different forms and are decided by the distribution measurements

-. from the field data. Generally speaking, the magnitudes of A'(w) and

C'(w) increases with the increasing concentration and that of B'(w)

instead of increasing decreases as the concentration increases.

The idea in establishing Eq. (13) for g(R) is from the experimental

histogram of the radial distribution function for the manganese nodule

16
fields (nodules are elastic materials) and the Percus-Yevick equation.

p-.

* .,.
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One sees that g(R) has the trend of decaying and oscillating about the

3 value one when the radial distance R is greater than the exclusion length

b(=2a). The asymptotic value of g(R) is one when R is generally three

or four times larger than the exclusion length (see Figure 2).

For a moderate concentration, e.g. w=0.1, a comparison of g(R) using

different expressions is presented as Figure 3. As can be seen from the

figure, (in the range of O<R<2b) the curves representing the Percus-Yevick

equation, the virial expansion and the proposed radial distribution function

which has the following form are very close to each other.

0 R<b
g(RI (r 1

1+0 .3e-7r(R-b)/bcos Tr(R-b)/2b , R > b (for w 0.1)

As a matter of fact, the virial expansion of g(R) is the simplest one in

doing the calculation with a moderate concentration.

To calculate the effective wave number K, the equation of Nm (Eq.(12))

:2".which involves the radial distribution function g(R1 needs to be obtained

first. In general, N can be expressed as the following integral.

N = 4wpF(K,k) f* [g(R)-l]RadR (14)

0

where F(K,k) is the function of the effective wave number K and the incident

wave number k. Eq. (14) is generated due to the ascending series expansion

(2)
of j (KR) and h (kR) in Eq. (12) as follows

m m

CO (-I) V(m + V)  ! X 2 v

m 2'm v!(2m+2v+l)!

h m M ()=J(X) -i Y m(X) (S

'--I

-° - . ° S



2v
Y, MX 1 r(2m-2v~l)X

'U 3x+1 =o n!r(m-v.1)

where r ()is the Gamma function.

In general, the integral

I'~ =f~ ' gR-IR (16)

*can be expressed as a recurssion formular which is useful in obtaining

the iterative solution using the computer. A recurssion formular of

Eq. (16) using Eq. (13) for g(R) can be expressed as

(b 1)

a+1

* where

Ta =f ' e-B'(R-b)cos C,(R-bI)RadR

= 22 [BI(bI)a + BtaT alC'aT*al1)

Tal fCO e- B'(R-b') sin Ct(R-bI)R a-ldR

o -B'
T 0

*0 -C1

T B= 2+C2

For moderate concentrations the expression of Ia using the virial

expansion for g(R) is

a, b a+l (2b)al 3b'+1(1-2' 2) b ba+l (2ca+4- 1)~I = (1.w) + 8w[- +16a2) (at+4)ct+l 4a2
L
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where b = 2a. For the lowest order of m in Eq. (15), which is useful inU 1
the low frequency scattering for monopole and dipole case, N is obtained0

as

N= 4pI 2  (17)
0

- -8w + 34w
2

* which is the same result as Eq. (28) of Ref. 9.

For the low frequency scattering, an exact form of N 1 by using the
0

"" Ornstein-Zerwike equation is

N 1 4,p [g(R1-R2dR= (1-w) (18)
S= (1+2w) 2  -1

- which can be shown to be the same as Eq. (17) when the higher order terms

3
(O(w311 are neglected after the expansion of Eq. (18).

p

-
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APPROXIMATION IN THE LOW FREQUENCY RANGE

In the present study the suspended sedimentary particles are in

general 2 to 4 microns in radius which make the nondimensional frequency

ka in the range of 0.01 to 0.1 when using the ultrasonic wave of the

- frequency 1.2 to 12 megahertz. It is known that in the low frequency

* Rayleigh limit (lca<<l) only the monopole (n=o) and dipole (n=l) terms

dominate the solution for the effective wave number K in Eq. (11). Thus

* Eq. (11) can be rewritten as

K 2 k 2+ 4T"p (A0 + A n 2 (19)

* or

K2 k3 0

k k3

where

PA 0= k? 0 [1 + iA 0H 00+ iA 1nH Oil

A =kf 11+i0 H + iA H
1 1 1 iAri 10  1 11'

1 2H =N + iN
00 0 0

H =H =N +N 2
01 10 1 1

H11 ='l ±li H0 0 ] ( N1  iN2
2

*~~ 2 2, *~--
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".3: 9
In the low frequency range, A0 and A can be approximated byA0 1 a

i-ia 0 w

(20)

a a
:-1- 1. -

4, 1  a l . W
k3

where

..W 1 4rpf [g(R)-l]R 2dR
a0

aO =foo  i q(a)da01 +iC0

a Ifo +iC q(a)da

The limiting values of a and a for ka<<l are, respectively
0 1

a0 = DaofG(a)i fluid spheres

a1 = -3DaifG(i)i

a = D(-1)G(a)i rigid spheres

= -3D -- G(a)i

a0 = DaoeG(a) i elastic spheres

". a =-3DalfG(a) i
1 i

I--°

- A

w ", •
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where

D = (ka) 3/3

G(a) = the size distribution factor

a0f = l/e - I

all = (l-g) / (l+2g)

1
- ae = 4 -1

e- el

o"e = ( g L / C 0 )'C o 2
4

e = g(CT/C 0 )2

-. a = mean size (radius)

g = density ratio between the scatterer and the surrounding medium

CO CL, C T = wave speed in the surrounding medium, compressional wave

speed in the scatterer, shear wave speed in the scatterer.

One sees from Eqs. (19) and (20) that the effective wave number K is a

complex number and can be written as

K : KR + iKI, (KI > 0).

" In general, the real part of K(KR) is much greater than the imaginary part

*- of K(KI) and Eq. (19) can thus be rewritten as, after separating the real

and imaginary part of K,

KR 2 (1+ws)(1-wt) (21)

k l+2wt

"2"2

°. -• ° •. ° .........-. .•... .
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2KI  2 s2  3t2  (22)
-- -Dw(l-Sw+34w 2 ) [--.w +l+wlw)](2

KR l+S 142wt(l--wt)'

where

aOf fluid

s= (-1 ) G(a) , rigid sphere

a- elastic

a" fluid

-1t= ) G(a) rigid sphere

alf elastic

For a uniform size distribution, i.e., G(a)=l, the results of (21)

9
- and (22) are identical to Eq. (73) obtained by Twersky.

Based on Eqs. (21) and (22) the normalized phase velocity KR/k and

the loss tangent 2KI/KR are calculated for waves propagating through the

water containing suspended particles, modelled as elastic spheres.

When the concentration is higher than about 5% the term (l-Sw+34w 2) is

4 2
replaced by (1-w) /(1+2w) in Eq. (22) to correct for the higher concen-

tration in calculating the loss tangent. The rigid scatterers are also

used in the calculation for comparison purpose and in this case Eq. (11)

becomes

K2  k k 2 + w k2 + i(ka)3 1 w(l-w)3 (7+2w)k 2  (23)
3 2 (1+2w) 2

which is Twersky's Eq. (75) 9 for uniform size scatterers. The size

distribution factor is considered to be from the Gaussian size distribution

and in this case is - I a
G() 2 1)2 12 23 3 ma m
.. 2(1+!e ) (- (m) -(2-e m ) + (24)

a a _2

1 l a

where m = the standard deviation. + (l+erf (i)
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RESULTS AND DISCUSSIONS

I
The acoustic wave propagating through a fluid medium containing

a random distribution of suspended particulats with a considerable

concentration is usually dispersed and attenuated. The effective wave

- .number K for densely distributed scatterers can be shown to be different

from that for sparsely distributed scatterers due to the pair-correlation

"- between scatterers. The dispersion of the phase velocity is characterized

by the real part of K(K R ) and the attenuation of the wave intensity can

be described by the imaginary part of K(K1). The effective wave number K

is frequency dependent except at the low frequency range in which the

. normalized phase velocity KR/k is independent of frequencies as shown in

Eq. (21).

The normalized phase velocity KR/k decreases as the concentration

increases at the low frequency range which can be seen from Figure 4.

• 'The dispersion of the phase velocity has a dependence on the size dis-

tribution also. One sees from the plot that particles with a higher

standard deviation in the Gaussian size distribution make the wave

disperse faster. At the zero concentration there should be no dispersion.

Therefore the ratio between the effective wave number and the incident

wave number becomes one as verified by Eq. (21).

The dispersion of the wave velocity in a medium containing the uniform

size scatterers is generally not so strong as that in a medium containing

- size distributed scatterers. One interesting phenomenon can be seen from

Figure 4 that for the uniform size rigid spheres the normalized phase

velocity instead of decreasi increases with increasing concentration.

This fact may be explained by the high impedance of the rigid body.

t..
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Figure 5 shows the relationship between the loss tangent 2KI/KR and

the concentrations at ka = 0.1, i.e. low frequency range. As can be seen

from the figure, the attenuation increases with the increasing concentration

until it reaches the maximum at the concentration of fifteen percent then

* decreases with the increasing concentration up to forty percent. As a

matter of fact, this phenomenon and the saturation concentration of 15% is

valid for all cases at the low frequency range and has also been veri-
13

fied by experiments. For scatterers with the Gaussian size distributions,

one sees that the more the particle size deviates from its mean radius,

the larger the attenuation is. Therefore the attenuation of suspended

particles with the uniform size distribution, which is the special case of

zero standard deviation in Eq. (26), is always smaller than that of

particles with the Gaussian size distribution. It can also be noted that

the attenuation of fixed rigid spheres is larger than the present sedimen-

tary particles which are modelled as elastic spheres. One sees from Eq. (20)

that the shear wave of the elastic material may affect the attenuation to

a certain degree. However, this effect does not appear in the present

problem due to its small magnitude.

The loss tangent is frequency dependent and its dependence in the lo'A

-- frequency range for a fixed concentration (10%) is shown in Figure 6. On

the log-log plot one sees that all straight lines have the slope three as

predicted by the Rayleigh scattering theory. The attenuation increases

with the increasing frequency in the Rayleigh region (ka<<l). The scatterers

with a larger standard deviation in the Gaussian size distribution

will reach the assigned attenuation at a lower frequency. The dispersion

and the attenuation of waves using Equation (7) based on the single

13scattering theory and Eq. (3) from Lloyd and Berry are also
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shown in Figures 4 and 7 respectively. One sees that unless the concentration

* is very low the single scattering theory fails to predict the propagation

characteristics.

Lloyd's equation predicts the wave dispersion well but fails in

determining the attenuation. Eq. (4) using the hole

correction is badly affected by the acoustic properties of scatterers.

This can be seen from the attenuation for rigid and elastic scatterers

(predicts better for rigid spheres). However, it is still not possible to

obtain the right attenuation unless the concentration is very low. If

attention is paid, one can see that there is no correction for the acoustic

properties due to the concentration in Figs. (2) and (4) as it appears

implicitly in Eq. (19)(finally appeared in Eqs. (21) and (22)) due to the

consideration of the pair-correlation between scatterers. Besides the lack

3 of the correction for a higher concentration. This may be the reason why

the single scattering theory and its modified equations predict a lower

dispersion and a much higher attenuation.

*The hole correction equation representing the pair-correlation function

is not suitable for the concentration greater than about five percent as

can be seen from Figure 7. Besides this the hole correction equation will

- generate negative attenuation coefficients which are nonphysical results

even starting at a comparatively low concentration.

When one is interested in the wave propagation through a higher

concentration of scatterers in the high frequency range, an iterative

* solution can be obtained using a computer using suitable numerical methods.

The proposed radial distribution function (Eq. 13)) is useful for pair-

d correlated elastic spheres whenever the concentration dependent parameters

are decided. However, this will be left to the next paper.

-," - , . . . . , &4 - : -... . ."-.. .. . .. . .... . .... .-. .... .
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TABLE I. Elastic Properties of the Sediments of the
Abyssal Hill used in Calculation.

17
(Data from Stoll's paper)

Range of Grain Sizes (a) 2 - 4 pm

Grain Density (p 2.65 g/cmj

Shear Wave Velocity (CT) 210 m/sec

Compressional Wave Velocity (CL) 3690 m/sec

I water density 1 g/cm 3 and sound speed in water 1500 m/sec
are used.

p

a.
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. APPLICATION OF TWERSKY'S MULTIPLE SCATTERING FORMALISM

TO A DENSE SUSPENSION OF ELASTIC PARTICLES IN WATER

by

U

Y. Ma*, V.K. Varadarf and V.V. Varadan*
Wave Propagation Group

Department of Engineering Mechanics

The Ohio State University, Columbus, Ohio 43210

ABSTRACT

-. Acoustic wave propagation through a dense suspension of solid elastic

particles in water is studied. The particles in suspension have a size

distribution and their relative positions are described by a pair-correlation

function. Twersky's multiple scattering formalism is employed to obtain new

analytical expressions for the phase velocity and coherent attenuation of a

wide range of concentrations. Numerical results presented are of interest

in the study of marine sediments.

Lj



.o o -. -.. - . - . . - .. -- -. , . - . , , . ~. - .- ~-.- - -- ? . " ; =

INTRODUCTION

I Recent advances in the area of multiple scattering in discrete random

media by Twersky1- 3 have shown that his technique can uniformly handle

scattering by acoustic and electromagnetic waves. He has obtained solutions

m in the long-wavelength limit for the bulk propagation constants by treating

the particles as "hard" spheres in a statistical-mechanical sense. In this

-* paper, his approach is applied to study acoustic wave propagation in a fluid

containing a dense suspension of spherical elastic particles of varying sizes.

Closed form expressions are obtained for both phase velocity and coherent

attenuation in the Rayleigh limit. Numerical results are presented at higher

frequencies for marine sediments for various values of concentrations.

SOLUTION FOR RADIALLY SYMMETRIC SCATTERERS

SConsider a random distribution of elastic spheres in water. The elastic

" properties of the scatterers are given by Lame's constants X and P l and

density p1. The fluid properties are given by compressibility X and density

S
* p. The longitudinal and shear wave velocities in the elastic scatterer are

* given by cp [ + 2Pl)/P]1 / 2 and c s  (i 1  1/2 while the compressional

2. 1/2
- wave velocity in water is given by c = (X/p)

The effective wavenumber K for a random distribution of pair-correlated

scatterers can be written in terms of wavenumber k(= w/c) in water as follows

2 2 4Trn
L K 2 +  A 2n (1)

n=o

* where

K/k

An -Ak f (a,)[l + iAn(n)- nm] (2)
m o

-1-

L



where

f (a,0) f (a,0)q(a)da ,f (a0) i(2n+l)
0. n

Cn is a complex function containing density, compressibility and rigidity of

the elastic scatterer and different orders of spherical Bessel and Neumann

*functions, see Appendix A and

- =m

n m I o [i47rn m+n- m

Hrnd 1 0;1j1+ (3)
in mi n [ k3 O n2_ + N3

N = N1 + iN2 -- [R-l] (KR)h(2)(kR)R2dR
m m m 0 no in

In Eqs. (2) and (3), no = N/V is the number density (number of scatterers per

.  unit volume), fn(a,O) is the forward scattering amplitude of a spherical scat-
.in

terer of radius 'a', q(a) is the size distribution function, g(R) is the pair-

correlation functions, jm( ) and h (2 ) are the spherical Bessel and Hankel

functions, respectively, and the coefficients d ( ; can be obtained from

" the expansion of the Legendre polynomials as given by

, ~ ~~~n+m O0 p(X
P(x)P(x)= m d ; p (4)

n m q=O m

d q ; ) has the following properties:

dq ;0 = dq(0; )

do ( ; + dl ;(+.+ d q ( ) = ; q = m+n (5)
n m n m n m

dodd ; =0 ; m+n = even
m n

Seven ;)= 0 ;m+n odd

* The effective wavenumber K(= K +iK2) is complex, the real and imaginary parts

-2-



of which are related to the phase velocity and coherent attenuation, res-

pectively.

For monopole and dipole cases

(O; = d ; ) 1 (6)0 1 0 1 .:

In the Rayleigh limit, only monopole and dipole terms and a two-term expansion

of (1) are considered in obtaining a closed form expression for the phase veloc-

ity and attenuation. For higher frequencies, the general form of d and more
q

*. terms in expansion of Eq. (1) should be employed. This is best done numerically.

To calculate the effective wavenumber K, the equation (3) containing N
m

which involves the radial distribution function g(R) needs to be obtained first.

For a more precise calculation, the correlation integral, Eq. (3), should be

computed for each value of at However, we have chosen to compute the corre-

lation integral for the mean sphere. This is discussed in more detail in

what follows. Following the work by Twersl-y, we can write

Nm = 4n F(Kk)I ; I [g(R)-IRdR (7)
0

where F(K,k) is a function of the effective wavenumber K and the host medium

I
wavenumber k. Using the Virial expansion for g(R), we can show that

3+l 1 c+l - a+2 ca+l a+4-i)
S_(1+ 8w)b 1  + 8w (2b)a+ + 3b (1-2 + b (2 (8)

-+L +l 4(a+2) 16(a+4)

where b = 2a and w = n 4rra/3 is the concentration of scatterers and

a = 4N/3w is the mean radius. For the lowest order of m in (7) which is

1useful for low frequency scattering, N is obtained as
0

N = 4 n1 2  -8w + 34w2  (9)
0 0

The Virial series expansion and the resulting Eq. (9) seem to be good for low

concentrations w<0.05. For higher concentrations, one can obtain the following

1
expression derived by Twersky for N by using Ornstein-Zernicke equation

given by

LL



N1  (1-w) 
(0 (1+2w) 2

Eq. (10) is preferred to Eq. (9) since it is not restricted to small values of

w. But corresponding expressions cannot be obtained for all values of a,

hence we have to resort to the virial expansion.

p

PHASE VELOCITY AND COHERENT ATTENUATION

The suspended sedimentary particles in water are in general 2 to 4 microns

in radius. For an acoustic wave with a frequency range of 1.2 to 12 MHz, this

corresponds to a non-dimensional wavenumber ka in the range of 0.01 to 0.1.

For such long wavelength acoustic wave propagation studies, it is enough to

keep only monopole and dipole terms in Eq. (1). The resulting dispersion equa-

tion is given by

4Trn

2 1 + k30Ao

k 2  47rn
1 -

k3 A1

wherep
A = kfo[1 + iA H + iA1nHol]

0 000 0l

-1
A =kf 1[1+ i0nHlo+ l.A 1H1

H = N1 + iN 2
00 0 0 (12)

H = H =N I + iN2
01 10 1 +i 1

47r. n
1 2 21 2H 11 3[1 ik 3o + H0 0 ] +-y[N2 + iN 2 ]

Following Twersky's work I
, A and A can be written as follows

A .0
0 1-fiW0

-4-
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ba

A - (13)
147rn0W a5 1+ 0 3 1-- i w

where

W :1 + 4n r [g(R)-l]R 2dR

"--c q(a)da
30 (14)

af 31 q (a) da

For kW < 1, we obtain the following limiting values for 7o and al

:.i(ka)3 aG ON)a'-o =" 3 aoeG(

(15)
3

= -i(ka) alf G(

5 where
1

-. a Ge = 1-l1

c 2 2g [(Ac 4 Is-c - (c (16)

f l1+2g

" In Eqs. (15) and (16), g is the density ratio between the scatterer and the

surrounding medium and c , c and c are the longitudinal and transverse waveSp S

speeds of the elastic scatterer and the compressional wave speed of the sur-

i rounding fluid. As a limiting case, we can also obtain the dispersion rela-

tions for a random distribution of either rigid (Xijli4) or fluid 01-0) scat-

terers in water.

After some manipulations, one can obtain the real (K1 ) and imaginary

part (K2) of the effective wavenumber K as follows



2
S= +Wa)(w) (17)
k) 1+2w8

1 2K 2  ( 3[ 2  382

K- -5 1+aw + l+2wB(1-w$)1

,--

where F:

af fluid

=- G(r) , rigid spheres (18)

""aoe ) elastic

a" fluid

8 = -1/2 G(a) , rigid spheres (19)

alif elastic

(18+4 2)o 0<c.5ady1w 4  2In Eq. (17), y =(-8w+34w2)for 0<w<0.05 and y=(l-w)4/(1+2w) for w>0.05. For

a uniform size distribution, G() = 1 while for a Gaussian size distribution

2 2  3'

2 exp[- -j(m) ][1 +-(m)

IT 3 2

+-1[ exp(---f(32'

+ - exp[- 1-(m) J(a) + [1 + erf(- )1 (20)

where m is the standard deviation.

The Gaussian distribution function has an infinite tail, however in

the numerical calculations the cut off size was chosen to be 2a where a

is given by

a = 34TrN/3w

m2
With this cut off, for = 0.4, q(2a) = 4.4x10-  which is small (4% of peak,o a

value)and if ka is small 2ka is still quite small and the long wavelength

6

p2
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approximation is still valid for m/a=0.18, q(2a)=l.9xlO which is negligible.

The question may be raised as to the radius of the excluded spherical volume

surrounding each scatterer. If we use 4a, the diameter of the largest size

sphere of the distribution, although we would be correct in the integration

on the allowed position for each scatterer, we would be excluding an un-
n

reasonable volume, thus limiting the volume fraction of scatterers. It seems

more reasonable to take the diameter of the mean sphere, 2a as the radius

of the excluded spherical volume. On the average, this would be applicable

.* to most scatterers and allow us to consider higher volume fractions. If the

volume fraction is low enough, whether the radius of the excluded sphere is

2a or 4a will not pose a problem. For higher concentrations, if m/a <0.5,

the procedure we have followed should yield good results.

Some numerical calculations were carried out for sediment particles in

water. The particles are assumed to be spherical in shape and their elastic

properties are given in Table I. In the Rayleigh limit, the normalized phase

velocity K1 /k is frequency independent. Its dependence on concentration is

shown in Fig. 1 for both uniform and Gaussian size distributions. The co-p
herent attenuation (loss tangent) K 2/KI , however, depends on frequency as

depicted by Fig. 2. From the log-log plot of Fig. 2, one can see that the

loss tangent for both uniform and gaussian size distributions is a straight

line with a slope equal to 3 as predicted by Eq. (17). Figure 3 presents

the loss tangent as a function of concentration at ka=0.1. The attenuation

increases with increasing concentration until it reaches a maximum at c=15%

and then decreases with increasing concentration. This kind of behavior has

4
been observed experimentally by Lloyd and Berry4

For higher frequencies and concentrations, more terms must be kept in

Eq. (1) along with suitable radial distribution function g(R). Our model of

7



the random system is that the spherical scatterers cannot interpenetrate.

In the statistical mechanics literature, this is synonymous with the ensemble

3of "hard" spheres. Several theories and calculations are available for deter-

mining the joint probability distribution function, viz., the Hypernetted-Chain

Equation(HNC), the Percus-Yevick Approximation (P-YA), the Self-Consistent

, Approximation (SCA), Monte Carlo calculations, etc. We found the SCA is better

suited for higher concentrations, see Ref. 5.

* In Fig. 4, the normalized phase velocity is plotted as a function of

frequency. The phase velocity displays an anomalous dispersion for 0.7<ka<l.0.

". This anomaly is a result of some resonance effect associated with the individual

particles. In Fig. 5, the attenuation is plotted as a function of frequency

for the same concentration, c=0.105. The attenuation is a maximum in the fre-

. quency range where the phase velocity displays an anomalous behavior. However,

since the calculations were made only up to ka=l.O, we cannot make a definitive

statement in this regard. In Figs. 6 and 7, the normalized phase velocity and

attenuation are plotted as a function of concentration at ka=l.0.

Vo

I.-.

9.,•
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CONCLUSIONS

In this paper, Twersky's multiple scattering formalism has been ex-

U tended to elastic scatterers in water. It has been shown that in addition

to providing closed form expressions for the dispersion relations for elastic

scatterers in the low frequency limit, his formalism is also well suited for

numerical computations at higher frequencies and concentrations employing

suitable pair-correlation functions.
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TABLE 1. Elastic Properties of Sediments Used in Calculations

Range of grain sizes (a) 2-4 Pm

Grain density (pl) 2.65 g/cm

Shear wave velocity (cs) 210 m/sec
5

Compressional wave velocity (c) 3690 m/sec

Sound speed in water 1500 m/sec
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APPENDIX A: THE EXPRESSION OF C USED IN EQ. (1)" n

x
1

nlD - g x32nl E

iCn =  
1 l

• -nl D + g 2 in E
x3

where

;jn l r n2 1 3 in3 2D 2nn+l) 1 (n +n-2);5 x23, n , 3

,-.n3

E = 4n(n+l) 1 [2
x 2Jn2 Jn3

n 2 ."n j n

[x3 3n3 2 1n2
-2x2  +n + n-2 f22Jn3 2h 2"i

.3 in2 -n2

IJ

n nl = n(ka), nn2 =n(kpa)

ii nl = Jn ( k a ) , j n2 in n(k pa ) , j n3 = in (k s a )

x = ka , k a, x 3 = k a

p T. s

k L = / C p  , k T  = / s  k - 0/c

, -10-



S. APPENDIX A (Cont.)

U k
= dj(kr)

n P
Sd (kPr)

s r=a

d-j (k r)
n P

s r=a

n dn (kr)n n.- ni =

d(kr) r=a

a

h = C/C*3 T L

n =the n-th order spherical Newman function, n =the n-th order spherical
i n

Bessel function.
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FIGURE CAPTIONS

Figure 1. Phase velocity vs concentration w in the Rayleigh limit for

Gaussian (m/a = 0.18, 0.4) and uniform size (m/i - 0.0) dis-
tributions

Figure 2. Coherent wave attenuation vs ka for w=O.l and m/1 = 0.0, 0.18, 0.4

P Figure 3. Coherent wave attenuation vs concentration w for ka =0.1 and

m/X = 0.0, 0.18, 0.4.

Figure 4. Normalized phase velocity vs ka for w=0.105.

Figure 5. Coherent wave attenuation vs ka for w=0.105.

Figure 6. Normalized phase velocity vs w for ka = 1.0.

Figure 7. Coherent wave attenuation vs w for ka = 1.0.
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